47 research outputs found

    Delayed viral clearance despite high number of activated T cells during the acute phase in Argentinean patients with hantavirus pulmonary syndrome

    Get PDF
    Background: The hallmarks of HPS are increase of vascular permeability and endothelial dysfunction. Although an exacerbated immune response is thought to be implicated in pathogenesis, clear evidence is still elusive. As orthohantaviruses are not cytopathic CD8+ T cells are believed to be the central players involved in pathogenesis. Methods: Serum and blood samples from Argentinean HPS patients were collected from 2014 to 2019. Routine white blood cell analyses, quantification and characterization of T-cell phenotypic profile, viral load, neutralizing antibody response and quantification of inflammatory mediators were performed. Findings: High numbers of activated CD4+ and CD8+ T cells were found in all HPS cases independently of disease severity. We found increased levels of some proinflammatory mediators during the acute phase of illness. Nonetheless, viral RNA remained high, showing a delay in clearance from blood up to late convalescence, when titers of neutralizing antibodies reached a high level. Interpretation: The high activated phenotypic profile of T cells seems to be unable to resolve infection during the acute and early convalescent phases, and it was not associated with the severity of the disease. Thus, at least part of the activated T cells could be induced by the dysregulated inflammatory response in an unspecific manner. Viral clearance seems to have been more related to high titers of neutralizing antibodies than to the T-cell response. Funding: This work was supported mainly by the Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos Malbrán”. Further details of fundings sources is included in the appendix.Fil: Iglesias, Ayelén Aluminé. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Periolo, Natalia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bellomo, Carla María. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Lewis, Lorena Cecilia. Provincia del Chubut. Servicio de Salud Mental. Hospital Zonal de Esquel; ArgentinaFil: Olivera, Camila Paula. Provincia del Chubut. Servicio de Salud Mental. Hospital Zonal de Esquel; ArgentinaFil: Rosario Anselmo, Constanza. Provincia del Chubut. Servicio de Salud Mental. Hospital Zonal de Esquel; ArgentinaFil: García, Marina. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Coelho, Rocío María. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Alonso, Daniel Oscar. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Dighero Kemp, Bonnie. National Institute Of Allergy And Infectious Diseases; Estados UnidosFil: Sharma, Heema. National Institute Of Allergy And Infectious Diseases; Estados UnidosFil: Kuhn, Jens H.. National Institute Of Allergy And Infectious Diseases; Estados UnidosFil: Di Paola, Nicholas. Center For Genome Sciences, U.s. Army Medical Research; Estados UnidosFil: Sanchez Lockhart, Mariano. Center For Genome Sciences, U.s. Army Medical Research; Estados UnidosFil: Palacios, Gustavo. Center For Genome Sciences, U.s. Army Medical Research; Estados UnidosFil: Schierloh, Luis Pablo. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Martinez, Valeria Paula. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; Argentin

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions

    Reduced evolutionary rate in reemerged Ebola virus transmission chains

    Get PDF
    On 29 June 2015, Liberia’s respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak (“flare-up”) of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over

    De novo transcriptome reconstruction and annotation of the Egyptian rousette bat

    Get PDF
    Background The Egyptian Rousette bat (Rousettus aegyptiacus), a common fruit bat species found throughout Africa and the Middle East, was recently identified as a natural reservoir host of Marburg virus. With Ebola virus, Marburg virus is a member of the family Filoviridae that causes severe hemorrhagic fever disease in humans and nonhuman primates, but results in little to no pathological consequences in bats. Understanding host-pathogen interactions within reservoir host species and how it differs from hosts that experience severe disease is an important aspect of evaluating viral pathogenesis and developing novel therapeutics and methods of prevention. Results Progress in studying bat reservoir host responses to virus infection is hampered by the lack of host-specific reagents required for immunological studies. In order to establish a basis for the design of reagents, we sequenced, assembled, and annotated the R. aegyptiacus transcriptome. We performed de novo transcriptome assembly using deep RNA sequencing data from 11 distinct tissues from one male and one female bat. We observed high similarity between this transcriptome and those available from other bat species. Gene expression analysis demonstrated clustering of expression profiles by tissue, where we also identified enrichment of tissue-specific gene ontology terms. In addition, we identified and experimentally validated the expression of novel coding transcripts that may be specific to this species. Conclusion We comprehensively characterized the R. aegyptiacus transcriptome de novo. This transcriptome will be an important resource for understanding bat immunology, physiology, disease pathogenesis, and virus transmission

    Virus genomes reveal factors that spread and sustained the Ebola epidemic.

    Get PDF
    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics
    corecore