78 research outputs found

    The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity

    Get PDF
    GABA signaling sustains fundamental brain functions, from nervous system development to the synchronization of population activity and synaptic plasticity. Despite these pivotal features, molecular determinants underscoring the rapid and cell-autonomous replenishment of the vesicular neurotransmitter GABA and its impact on synaptic plasticity remain elusive. Here, we show that genetic disruption of the glutamine transporter Slc38a1 in mice hampers GABA synthesis, modifies synaptic vesicle morphology in GABAergic presynapses and impairs critical period plasticity. We demonstrate that Slc38a1-mediated glutamine transport regulates vesicular GABA content, induces high-frequency membrane oscillations and shapes cortical processing and plasticity. Taken together, this work shows that Slc38a1 is not merely a transporter accumulating glutamine for metabolic purposes, but a key component regulating several neuronal functions

    Selective neuromodulation and mutual inhibition within the CA3-CA2 system can prioritize sequences for replay

    No full text
    To make optimal use of previous experiences, important neural activity sequences must be prioritized during hippocampal replay. Integrating insights about the interplay between CA3 and CA2, we propose a conceptual framework that allows the two regions to control which sequences are reactivated. We suggest that neuromodulatory‐gated plasticity and mutual inhibition enable discrete assembly sequences in both regions to support each other while suppressing competing sequences. This perspective provides a coherent interpretation for a variety of seemingly disconnected functional properties of CA2 and paves the way for a more general understanding of CA2

    Inferring causal connectivity from pairwise recordings and optogenetics.

    No full text
    To understand the neural mechanisms underlying brain function, neuroscientists aim to quantify causal interactions between neurons, for instance by perturbing the activity of neuron A and measuring the effect on neuron B. Recently, manipulating neuron activity using light-sensitive opsins, optogenetics, has increased the specificity of neural perturbation. However, using widefield optogenetic interventions, multiple neurons are usually perturbed, producing a confound-any of the stimulated neurons can have affected the postsynaptic neuron making it challenging to discern which neurons produced the causal effect. Here, we show how such confounds produce large biases in interpretations. We explain how confounding can be reduced by combining instrumental variables (IV) and difference in differences (DiD) techniques from econometrics. Combined, these methods can estimate (causal) effective connectivity by exploiting the weak, approximately random signal resulting from the interaction between stimulation and the absolute refractory period of the neuron. In simulated neural networks, we find that estimates using ideas from IV and DiD outperform naïve techniques suggesting that methods from causal inference can be useful to disentangle neural interactions in the brain

    Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex and Visual Cortex Examined in the Rat and Mouse

    No full text
    Perineuronal nets (PNNs) are specialized extracellular matrix (ECM) structures that condense around the soma and proximal dendrites of subpopulations of neurons. Emerging evidence suggests that they are involved in regulating brain plasticity. However, the expression of PNNs varies between and within brain areas. A lack of quantitative studies describing the distribution and cell-specificity of PNNs makes it difficult to reveal the functional roles of PNNs. In the current study, we examine the distribution of PNNs and the identity of PNN-enwrapped neurons in three brain areas with different cognitive functions: the dorsal hippocampus, medial entorhinal cortex (mEC) and primary visual cortex (V1). We compared rats and mice as knowledge from these species are often intermingled. The most abundant expression of PNNs was found in the mEC and V1, while dorsal hippocampus showed strikingly low levels of PNNs, apart from dense expression in the CA2 region. In hippocampus we also found apparent species differences in expression of PNNs. While we confirm that the PNNs enwrap parvalbumin-expressing (PV+) neurons in V1, we found that they mainly colocalize with excitatory CamKII-expressing neurons in CA2. In mEC, we demonstrate that in addition to PV+ cells, the PNNs colocalize with reelin-expressing stellate cells. We also show that the maturation of PNNs in mEC coincides with the formation of grid cell pattern, while PV+ cells, unlike in other cortical areas, are present from early postnatal development. Finally, we demonstrate considerable effects on the number of PSD-95-gephyrin puncta after enzymatic removal of PNNs

    CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing

    No full text
    Hippocampal region CA2 has received increased attention due to its importance in social recognition memory. While its specific function remains to be identified, there are indications that CA2 plays a major role in a variety of situations, widely extending beyond social memory. In this targeted review, we highlight lines of research which have begun to converge on a more fundamental role for CA2 in hippocampus-dependent memory processing. We discuss recent proposals that speak to the computations CA2 may perform within the hippocampal circuit

    Inferring causal connectivity from pairwise recordings and optogenetics

    No full text
    To understand the neural mechanisms underlying brain function, neuroscientists aim to quantify causal interactions between neurons, for instance by perturbing the activity of neuron A and measuring the effect on neuron B. Recently, manipulating neuron activity using light-sensitive opsins, optogenetics, has increased the specificity of neural perturbation. However, using widefield optogenetic interventions, multiple neurons are usually perturbed, producing a confound -- any of the stimulated neurons can have affected the postsynaptic neuron making it challenging to discern which neurons produced the causal effect. Here, we show how such confounds produce large biases in interpretations. We explain how confounding can be reduced by combining instrumental variables (IV) and difference in differences (DiD) techniques from econometrics. Combined, these methods can estimate (causal) effective connectivity by exploiting the weak, approximately random signal resulting from the interaction between stimulation and the absolute refractory period of the neuron. In simulated neural networks, we find that estimates using ideas from IV and DiD outperform naive techniques suggesting that methods from causal inference can be useful to disentangle neural interactions in the brain

    Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells

    Get PDF
    Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations

    The extracellular matrix and perineuronal nets in memory.

    No full text
    All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.Funding for this research came from: Center of Reconstruction Neuroscience – NEURORECON CZ.02.1.01/0.0/0.0/15_003/0000419 and Czech Science Agency 19-10365S. Medical Research Council MR/R004463, MR/V002694, Wings for Life (WFL-GB-04/19), IRP P172 to JWF. Epilepsy Research UK (P1807), Alzheimer’s Research UK, Wings for Life (WFL-UK-008-15), COST Action INNOGLY (CA18103) to JCFK. Good Samaritan Foundation of Legacy Health, and National Institutes of Health DA040965 and DA047121 to BAS
    corecore