35 research outputs found

    A modeling study of functional magnetic resonance imaging to individualize target definition of seminal vesicles for external beam radiotherapy

    Get PDF
    Background Pre-treatment magnetic resonance imaging (MRI) can give patient-specific evaluation of 25 suspected pathologically-involved volumes in the seminal vesicles (SV) in prostate cancer patients. By 26 targeting this suspicious volume we hypothesize that radiotherapy is more efficient without introducing more 27 toxicity. In this study we evaluate the concept of using MRI-defined target volumes in terms of tumor 28 control probability (TCP) and rectal normal tissue complication probability (NTCP). Materials and methods Twenty-one high-risk prostate cancer patients were included. Pre-treatment CT 30 images, T2 weighted (T2w) MRI and two multi-parametric MRI were acquired. Overlap between a 31 suspicious volume in the SV observed on T2w images and a suspicious volume observed on either multi-32 parametric MRI was assumed to reflect a true malignant region (named “MRI positive”). In addition the 33 entire SV on the CT-scan was delineated. Three treatment plans of 2Gyx39 fractions were generated per 34 patient: one covering the MRI positive volume in SV and prostate with margin of 11 mm to the MRI positive 35 in the SV and two plans covering prostate and SV using 11mm and 7mm SV margin, respectively. All plans 36 prescribed the same PTV mean dose. Rectal NTCP grade≥2 was evaluated with the Lyman-Kutcher-Burman 37 model and TCP was estimated by a logistic model using the combined MRI positive volume in SV and 38 prostate as region-of-interest. Results 14/21 patients were classified as MRI positive, 6 of which had suspicious volumes in all three MRI 40 modalities. On average TCP for the plan covering prostate and the MRI positive volume was 3% higher (up 41 to 11%) than the two other plans which was statistically significant. The increased TCP was obtained without 42 increasing rectal NTCP grade≥2. Conclusion Using functional MRI for individualized target delineation in the seminal vesicles may improve 44 the treatment outcome in radiotherapy of prostate cancer without increasing the rectal toxicity.</p

    TEDDI : radiotherapy delivery in deep inspiration for pediatric patients - a NOPHO feasibility study

    Get PDF
    Background: Radiotherapy (RT) delivered in deep inspiration breath-hold (DIBH) is a simple technique, in which changes in patient anatomy can significantly reduce the irradiation of the organs at risk (OARs) surrounding the treatment target. DIBH is routinely used in the treatment of some adult patients to diminish the risk of late effects; however, no formalized studies have addressed the potential benefit of DIBH in children. Methods/Design: TEDDI is a multicenter, non-randomized, feasibility study. The study investigates the dosimetric benefit of RT delivered in DIBH compared to free breathing (FB) in pediatric patients. Also, the study aims to establish the compliance to DIBH and to determine the accuracy and reproducibility in a pediatric setting. Pediatric patients (aged 5-17 years) with a tumor in the mediastinum or upper abdomen with the possible need of RT will be included in the study. Written informed consent is obligatory. Prior to any treatment, patients will undergo a DIBH training session followed by a diagnostic PET/CT-or CT-staging scan in both DIBH and FB. If the patient proceeds to RT, a RT planning CT scan will be performed in both DIBH and FB and two separate treatment plans will be calculated. The superior treatment plan, i.e. equal target coverage and lowest overall dose to the OARs, will be chosen for treatment. Patient comfort will be assessed daily by questionnaires and by adherence to the respiratory management procedure. Discussion: RT in DIBH is expected to diminish irradiation of the OARs surrounding the treatment target and thereby reduce the risk of late effects in childhood cancer survivors.Peer reviewe

    Surface guided 3DCRT in deep-inspiration breath-hold for left sided breast cancer radiotherapy: implementation and first clinical experience in Iran

    Get PDF
    Background: The aim of the study is to evaluate the overall accuracy of the surface-guided radiotherapy (SGRT) workflow through a comprehensive commissioning and quality assurance procedures and assess the potential benefits of deep-inspiration breath-hold (DIBH) radiotherapy as a cardiac and lung dose reduction approach for left-sided breast cancer irradiation. Materials and methods: Accuracy and reproducibility of the optical surface scanner used for DIBH treatment were evaluated using different phantoms. Patient positioning accuracy and reproducibility of DIBH treatment were evaluated. Twenty patients were studied for treatment plan quality in target dose coverage and healthy organ sparing for the two different treatment techniques. Results: Reproducibility tests for the surface scanner showed good stability within 1 mm in all directions. The maximum position variation between applied shifts on the couch and the scanner measured offsets is 1 mm in all directions. The clinical study of 200 fractions showed good agreement between the surface scanner and portal imaging with the isocenter position deviation of less than 3 mm in each lateral, longitudinal, and vertical direction. The standard deviation of the DIBH level showed a value of &lt; 2 mm during all evaluated DIBHs. Compared to the free breathing (FB) technique, DIBH showed significant reduction of 48% for heart mean dose, 43% for heart V25, and 20% for ipsilateral lung V20. Conclusion: Surface-guided radiotherapy can be regarded as an accurate tool for patient positioning and monitoring in breast radiotherapy. DIBH treatment are considered to be effective techniques in heart and ipsilateral lung dose reductions for left breast radiotherapy

    Long term safety and visibility of a novel liquid fiducial marker foruse in image guided radiotherapy of non-small cell lung cancer

    Get PDF
    Safety and clinical feasibility of injecting a novel liquid fiducial marker for use in image guided radiotherapy in 15 patients with non-small cell lung cancer are reported. No major safety or toxicity issues were encountered. Markers present at start of radiotherapy remained visible in cone beam computed tomography and fluoroscopy images throughout the treatment course and on computed tomography images during follow-up (0–38 months). Marker volume reduction was seen until 9 months after treatment, after which no further marker breakdown was found. No post-treatment migration or marker related complications were found. Keywords: Liquid fiducial marker, Image-guided radiotherapy, NSCLC, Endoscopic ultrasound, EBU
    corecore