23 research outputs found

    Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures.

    Get PDF
    A colloidal seeded-growth strategy, relying on time-programmed delivery of selected stabilizing surfactants, has been developed to synthesize bimagnetic hybrid nanocrystals (HNCs) that consist of a single-crystal tetrapod-shaped skeleton of ferrimagnetic (FiM) iron oxide functionalized with multiple polycrystalline spherical domains of ferromagnetic (FM) Co. Due to the direct bonding interfaces formed between the two materials at the relevant junction regions, the HNCs exhibit FiM-FM exchange coupling, which transcribes into a rich scenario of significantly modified properties (not otherwise achievable with any of the single components or with their physical mixtures), including higher saturation magnetization and coercitivity values, exchange biasing, and enhanced thermal stability due to induced extra anisotropy. The availability of these new types of HNCs suggests that development of appropriate synthetic tools for arranging distinct material domains in predetermined spatial arrangements could lead to ..

    Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods.

    Get PDF
    Colloidal semiconductor-magnetic hybrid nanocrystals with topologically controlled composition are fabricated by heterogeneous nucleation of spherical e-Co domains onto anatase TiO2 nanorods. The latter can be selectively decorated at either their tips or at multiple locations along their longitudinal sidewalls, forming lattice-matched heterointerfaces regardless of the metal deposition sites. The possibility of switching between either heterostructure growth modes arises from the facet-dependent chemical reactivity of the oxide seeds, which is governed mainly by selective adhesion of the surfactants rather than by small differences in misfit-induced interfacial strain at the relevant junction points

    Динамика насаждений сосны крымской (Pinus pallasiana L. ) в горном Крыму

    Get PDF
    За период 1938 – 2000 гг. произошло "смещение" мест произрастания сосновых древостоев в более богатые и влажные условия. Увеличилась площадь насаждений сосны крымской. Площадь сосновых культур больше чем в 3 раза превысила площадь естественных лесов. Средний запас сосновых лесов составляет 136 м³/га. Древостои ІІ и высших классов бонитета занимают лишь 12 % сосновых лесов.За період 1938 – 2000 рр. відбувся "зсув" місць виростання соснових деревостанів у багатші й вологіші умови. Збільшилася площа насаджень сосни кримської. Площа соснових культур у понад 3 рази перевершила площу природних лісів. Середній запас соснових лісів становить 136 м³/га. Деревостани ІІ і вищих класів бонітету займають лише 12 % соснових лісів.For 1938 – 2000 "displacement" of pine stands to more rich and moist sites has occurred. Area of P. pallasiana has increased. Pine plantation area has exceeded area of natural pine forests more than 3 times. Mean stock of pine forests is 136 m³/ha. Stands of the ІІ and higher growth classes take only 12 % of pine forests

    Advances in the chemical fabrication of complex multimaterial nanocrystals

    No full text
    A review. Recent achievements of nanochem. research in the fabrication of colloidal nanoheterostructures are reviewed through revisiting relevant papers and related patents. Attention is focused on newly conceived generations of hybrid nanocrystals (HNCs) with a topol. controlled compn., in which size and shape tailored domains of different inorg. materials are permanently assembled together in a single multifunctional particle. Strategies for accessing HNCs in various configurations, such as core/shell systems, hetero-oligomers based on nearly spherical portions, and highly asym. nanostructures comprising joint sections with different shapes, are discussed. The chem.-phys. properties and technol. advantages offered by such complex nanocrystals are also highlighted

    Dataset supporting the University of Southampton Doctoral Thesis 'Developing nanocomposite materials for catalytic applications'

    No full text
    This dataset supports the University of Southampton PhD thesis &#39;Developing Nanocomposite Materials for Catalytic Applications&#39; and contains data supporting figures in the main text. The files are organised in three zipped folders: Chapter_3.zip, Chapter_4.zip Chapter_5.zip The files in a .opju file format, to be opened in Origin software. The images are in .tif and .png formats. </span

    Fabrication of Fischer-Tropsch Catalysts by Deposition of Iron Nanocrystals on Carbon Nanotubes

    No full text
    The fabrication of supported catalysts consisting of colloidal iron oxide nanocrystals with tunable size, geometry, and loadinghomogeneously dispersed on carbon nanotube (CNT) supportsis described herein. The catalyst synthesis is performed in a two-step approach. First, colloidal iron and iron oxide nanocrystals with a narrow size distribution are produced. Second, the nanocrystals are attached to CNT grains serving as support structure. Important features, like iron loading and nanocrystal density on the CNT support, are controlled by changing the nanocrystal concentration and ligand concentration, respectively. The Fischer-Tropsch performance reveals these new materials to be active, selective toward lower olefins (60% C of hydrocarbons produced in the absence of promoters), and remarkably stable against particle growth

    Exchange-Coupled Bimagnetic Cobalt/Iron Oxide Branched Nanocrystal Heterostructures

    No full text
    A colloidal seeded-growth strategy, relying on time-programmed delivery of selected stabilizing surfactants, has been developed to synthesize bimagnetic hybrid nanocrystals (HNCs) that consist of a single-crystal tetrapod-shaped skeleton of ferrimagnetic (FiM) iron oxide functionalized with multiple polycrystalline spherical domains of ferromagnetic (FM) Co. Due to the direct bonding interfaces formed between the two materials at the relevant junction regions, the HNCs exhibit FiM-FM exchange coupling, which transcribes into a rich scenario of significantly modified properties (not otherwise achievable with any of the single components or with their physical mixtures), including higher saturation magnetization and coercitivity values, exchange biasing, and enhanced thermal stability due to induced extra anisotropy. The availability of these new types of HNCs suggests that development of appropriate synthetic tools for arranging distinct material domains in predetermined spatial arrangements could lead to a more rational design of nanoheterostructures potentially exploitable as active elements in future generations of magnetic recording devices

    Fluidized bed chemical vapor deposition on hard carbon powders to produce composite energy materials

    No full text
    Herein, we report a general route for the uniform coating of hard carbon (HC) powders via fluidized bed chemical vapor deposition. Carbon-based fine powders are excellent substrate materials for many catalytic and electrochemical applications but intrinsically difficult to fluidize and prone to elutriation. The reactor was designed to achieve as much retention of powders as possible, supported by a computational fluid dynamics study to assess the hydrodynamic behavior for varying gaseous flow rates. Solutions of the tin seleno- and thio-ether complexes [SnCl4{nBuSe(CH2)3SenBu}] and [SnCl4{nBuS(CH2)3SnBu}] were used as single source precursors and injected at high temperature into a fluidized bed of HC powders under nitrogen flow. The method allowed for the synthesis of HC-SnSx–SnSe2 composites at the gram scale with potential applications in electrocatalysis and sodium-ion battery anodes
    corecore