192 research outputs found

    A bovine nucleus pulposus explant culture model

    Get PDF
    Low back pain is a global health problem that is frequently caused by intervertebral disc degeneration (IVDD). Sulfated glycosaminoglycans (sGAGs) give the healthy nucleus pulposus (NP) a high fixed charge density (FCD), which creates an osmotic pressure that enables the disc to withstand high compressive forces. However, during IVDD sGAG reduction in the NP compromises biomechanical function. The aim of this study was to develop an ex vivo NP explant model with reduced sGAG content and subsequently investigate biomechanical restoration via injection of proteoglycan-containing notochordal cell-derived matrix (NCM). Bovine coccygeal NP explants were cultured in a bioreactor chamber and sGAG loss was induced by chondroitinase ABC (chABC) and cultured for up to 14 days. Afterwards, diurnal loading was studied, and explant restoration was investigated via injection of NCM. Explants were analyzed via histology, biochemistry, and biomechanical testing via stress relaxation tests and height measurements. ChABC injection induced dose-dependent sGAG reduction on Day 3, however, no dosing effects were detected after 7 and 14 days. Diurnal loading reduced sGAG loss after injection of chABC. NCM did not show an instant biomechanical (equilibrium pressure) or biochemical (FCD) restoration, as the injected fixed charges leached into the medium, however, NCM stimulated proliferation and increased Alcian blue staining intensity and matrix organization. NCM has biological repair potential and biomaterial/NCM combinations, which could better entrap NCM within the NP tissue, should be investigated in future studies. Concluding, chABC induced progressive, time-, dose- and loading-dependent sGAG reduction that led to a loss of biomechanical function. Keywords. biomechanics | intervertebral disc | matrix degradation | low back pain | proteoglycans.</p

    Dynamic loading leads to increased metabolic activity and spatial redistribution of viable cell density in nucleus pulposus tissue

    Get PDF
    Background: Nucleus pulposus (NP) cell density is orchestrated by an interplay between nutrient supply and metabolite accumulation. Physiological loading is essential for tissue homeostasis. However, dynamic loading is also believed to increase metabolic activity and could thereby interfere with cell density regulation and regenerative strategies. The aim of this study was to determine whether dynamic loading could reduce the NP cell density by interacting with its energy metabolism. Methods: Bovine NP explants were cultured in a novel NP bioreactor with and without dynamic loading in milieus mimicking the pathophysiological or physiological NP environment. The extracellular content was evaluated biochemically and by Alcian Blue staining. Metabolic activity was determined by measuring glucose and lactate in tissue and medium supernatants. A lactate-dehydrogenase staining was performed to determine the viable cell density (VCD) in the peripheral and core regions of the NP. Results: The histological appearance and tissue composition of NP explants did not change in any of the groups. Glucose levels in the tissue reached critical values for cell survival (≤0.5 mM) in all groups. Lactate released into the medium was increased in the dynamically loaded compared to the unloaded groups. While the VCD was unchanged on Day 2 in all regions, it was significantly reduced in the dynamically loaded groups on Day 7 (p ≤ 0.01) in the NP core, which led to a gradient formation of VCD in the group with degenerated NP milieu and dynamic loading (p ≤ 0.05). Conclusion: It was demonstrated that dynamic loading in a nutrient deprived environment similar to that during IVD degeneration can increase cell metabolism to the extent that it was associated with changes in cell viability leading to a new equilibrium in the NP core. This should be considered for cell injections and therapies that lead to cell proliferation for treatment of IVD degeneration.</p

    An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation.

    Get PDF
    Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging

    Cell sources proposed for nucleus pulposus regeneration

    Get PDF
    Abstract: Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose‐derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential

    Differentiation of human induced pluripotent stem cells towards notochordal-like cells: the role of tissue source

    Get PDF
    INTRODUCTION: Notochordal cells (NCs) are linked to a healthy intervertebral disc (IVD), and they are considered an exciting target for cell-based therapy. However, NCs are scarcely available as they are lost early in life, and attempts at in vivoexpansion have failed because NCs lose their specific phenotype. The production of Notochordal-like cells (NLCs) from human induced pluripotent stem cells (iPSCs) is a viable alternative. However, current attempts have been challenged by the low differentiation efficiency into the NC lineage. Therefore, the aim of this study was to build on the tissue-specific epigenetic memory of hiPSCs derived from IVD progenitor cells (TIE2+-cells) to improve hiPSC differentiation towards mature, matrix-producing NLCs. METHODS: hiPSCs were generated from TIE2⁺ cells of three adult donors. As a comparison, donormatched minimally invasive peripheral blood mononuclear (PBM) cell-derived iPSCs were used. Firstly, the iPSCs were differentiated into mesendodermal progenitors by Wnt pathway activation (N2B27 medium + 3µM CHIR99021)¹. Thereafter, the cells were further driven towards the NClineage by transfection with synthetic NOTO mRNA¹ and further matured using a 3D pellet culture in discogenic medium containing 10ng/mL TGF-β1. Read-out parameters included cell morphology, gene and protein expression and matrix deposition. RESULTS: Both TIE2⁺ and PBM cell-derived hiPSC showed successful differentiation towards mesendodermal progenitor cells following Wnt activation on day 2, indicated by the cells moving out of the colonies after CHIR stimulation. Accordingly, a decreased gene expression of pluripotency markers (OCT4, SOX2, NANOG), and upregulation of Wnt-target genes (LEF1, NODAL) and mesendodermal markers (TBXT, FOXA2, TBX6) was observed compared to mTESR1 controls. This was confirmed by immuno-stains for FOXA2 and TBXT. At day 3, we confirmed a 9-fold increase in NOTO mRNA levels after transfection in all donor lines. At day 28, the appearance of vacuolated NLCs was observed in both TIE2⁺ and PBM cell-derived pellet cultures confirming successful commitment towards the NC-lineage. Interestingly, while DMMB-assay detected GAG deposition in both lines, a significant increase in GAG content was seen in the TIE2⁺ cell-derived pellets. DISCUSSION & CONCLUSIONS: Tissue-specific TIE2⁺ cell-derived iPSCs may allow for an improved iPSNLC differentiation efficiency, indicated by the increased potency for deposition of GAG-rich matrix. Detailed analysis of the phenotypic markers and matrix deposited at the end of the 28 day maturation is ongoing to further document the phenotype of these iPS-NLCs. Delineating which epigenetic features are retained after reprogramming of these two cell lines, could shed light on the differences in their differentiation capacity. REFERENCES: ¹Colombier et al., 202

    Чверть століття на ниві освіти

    Get PDF
    Наталія Купріянівна Місяць – відомий український вчений-мовознавець, викладач та організатор освіти на Житомирщині. Чверть століття, починаючи вже з далекого 1975 року, життя та діяльність Наталії Куприянівні тісно пов’язані з філологічним факультетом Житомирського едуніверситету імені Івана Франка

    Targeted screening of inflammatory mediators in spontaneous degenerative disc disease in dogs reveals an upregulation of the tumor necrosis superfamily

    Get PDF
    Background: The regulation of inflammatory mediators in the degenerating intervertebral disc (IVD) and corresponding ligamentum flavum (LF) is a topic of emerging interest. The study aimed to investigate the expression of a broad array of inflammatory mediators in the degenerated LF and IVD using a dog model of spontaneous degenerative disc disease (DDD) to determine potential treatment targets. Methods: LF and IVD tissues were collected from 22 normal dogs (Pfirrmann grades I and II) and 18 dogs affected by DDD (Pfirrmann grades III and IV). A qPCR gene array was used to investigate the expression of 80 inflammatory genes for LF and IVD tissues, whereafter targets of interest were investigated in additional tissue samples using qPCR, western blot (WB), and immunohistochemistry. Results: Tumor necrosis factor superfamily (TNFSF) signaling was identified as a regulated pathway in DDD, based on the significant regulation (n-fold ± SD) of various TNFSF members in the degenerated IVD, including nerve growth factor (NGF; -8 ± 10), CD40LG (464 ± 442), CD70 (341 ± 336), TNFSF Ligand 10 (9 ± 8), and RANKL/TNFSF Ligand 11 (85 ± 74). In contrast, TNFSF genes were not significantly affected in the degenerated LF compared to the control LF. Protein expression of NGF (WB) was significantly upregulated in both the degenerated LF (4.4 ± 0.5) and IVD (11.3 ± 5.6) compared to the control group. RANKL immunopositivity was significantly upregulated in advanced stages of degeneration (Thompson grades IV and V) in the nucleus pulposus and annulus fibrosus of the IVD, but not in the LF. Conclusions: DDD involves a significant upregulation of various TN

    A combined western and bead-based multiplex platform to characterize extracellular vesicles

    Get PDF
    In regenerative medicine, extracellular vesicles (EVs) are considered as a promising cell-free approach. EVs are lipid bilayer-enclosed vesicles secreted by cells and are key players in intercellular communication. EV-based therapeutic approaches have unique advantages over the use of cell-based therapies, such as a high biological, but low immunogenic and tumorigenic potential. To analyze the purity and biochemical composition of EV preparations, the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins coisolated/recovered with EVs. Traditional methods for EV characterization, such as Western blotting, require a relatively high EV sample/protein input for the analysis of one protein. We here evaluate a combined Western and bead-based multiplex platform, called DigiWest, for its ability to detect simultaneously multiple EV markers in an EV-containing sample with inherent low protein input. DigiWest analysis was performed on EVs from various sources and species, including mesenchymal stromal cells, notochordal cells, and milk, from human, pig, and dog. The study established a panel of nine antibodies that can be used as cross-species for the detection of general EV markers and coisolates in accordance with the ISEV guidelines. This optimized panel facilitates the parallel evaluation of EV-containing samples, allowing for a comprehensive characterization and assessment of their purity. The total protein input for marker analysis with DigiWest was 1 μg for all nine antibodies, compared with ∼10 μg protein input required for traditional Western blotting for one antibody. These findings demonstrate the potential of the DigiWest technique for characterizing various types of EVs in the regenerative medicine field

    Aquaporin expression in the human and canine intervertebral disc during maturation and degeneration

    Get PDF
    The intervertebral disc (IVD) is a highly hydrated tissue, the rich proteoglycan matrix imbibes water, enabling the disc to withstand compressive loads. During ageing and degeneration increased matrix degradation leads to dehydration and loss of function. Aquaporins (AQP) are a family of transmembrane channel proteins that selectively allow the passage of water in and out of cells and are responsible for maintaining water homeostasis in many tissues. Here, the expression of all 13 AQPs at gene and protein level was investigated in human and canine non‐degenerate and degenerate IVDs to develop an understanding of the role of AQPs during degeneration. Furthermore, in order to explore the transition of notochordal cells (NCs) towards nucleus pulposus (NP) cells, AQP expression was investigated in canine IVDs enriched in NCs to understand the role of AQPs in IVD maturation. AQP0, 1, 2, 3, 4, 5, 6, 7 and 9 were expressed at gene and protein level in both non‐degenerate and degenerate human NP tissue. AQP2 and 7 immunopositivity increased with degeneration in human NP tissue, whereas AQP4 expression decreased with degeneration in a similar way to AQP 1 and 5 shown previously. All AQP proteins that were identified in human NP tissue were also expressed in canine NP tissue. AQP2, 5, 6 and 9 were found to localise to vacuole‐like membranes and cell membranes in NC cells. In conclusion, AQPs were abundantly expressed in human and canine IVDs. The expression of many AQP isotypes potentially alludes to multi‐faceted functions related to adaption of NP cells to the conditions they encounter within their microenvironment in health and degeneration. The presence of AQPs within the IVD may suggest an adaptive role for these water channels during the development and maintenance of the healthy, mature IVD
    corecore