12,677 research outputs found
Fractional charges in pyrochlore lattices
A pyrochlore lattice is considered where the average electron number of
electrons per site is half--integer, concentrating on the case of exactly half
an electron per site. Strong on-site repulsions are assumed, so that all sites
are either empty or singly occupied. Where there are in addition strong
nearest--neighbour repulsions, a tetrahedron rule comes into effect, as
previously suggested for magnetite. We show that in this case, there exist
excitations with fractional charge (+/-) e/2. These are intimately connected
with the high degeneracy of the ground state in the absence of kinetic energy
terms. When an additional electron is inserted into the system, it decays into
two point like excitations with charge -e/2, connected by a Heisenberg spin
chain which carries the electron's spin.Comment: 10 pages, 4 eps figures. To appear in Decemeber issue of Annalen der
Physi
Interplanetary Alfvenic fluctuations: A statistical study of the directional variations of the magnetic field
Magnetic field data from HELIOS 1 and 2 are used to test a stochastic model for Alfvenic fluctuations recently proposed. A reasonable matching between observations and predictions is found. A rough estimate of the correlation length of the observed fluctuations is inferred
Radial evolution of power spectra of interplanetary Alfvenic turbulence
The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed
Supporting the active learning of collaborative database browsing techniques
We describe the implications of a study of database browsing behaviour for the development of a system to support more effective browsing. In particular we consider the importance of collaborative working, both in learning browsing skills and in co‐operating on a shared information‐retrieval task. From our study, we believe that an interface to support collaboration should promote the awareness of the activities of others, better visualization of the information data structures being browsed, and effective communication of the browsing process
Magnetic dips in the solar wind
Using magnetic data from the HELIOS 1 fluxgate magnetometer, with a 0.2 sec resolution, the structures of several interplanetary discontinuities involving magnetic dips and rotations of the magnetic field vector were investigated. A minimum variance analysis illustrates the behavior of the magnetic field through the transition in the plane of its maximum variation. Using this analysis, quite different structures have been individuated and, in particular, narrow transitions resembling almost one dimensional reconnected neutral sheets. For the thinner cases (scale lengths of the magnetic rotation of the order or smaller than 1,000 km), results show the observed structures could be the nonlinear effect of a resistive tearing mode instability having developed on an originally one dimensional neutral sheet at the solar corona
Magnetic fields and flows between 1 AU and 0.3 AU during the primary mission of HELIOS 1
The recurrent flow and field patterns observed by HELIOS 1, and the relation between these patterns and coronal holes are discussed. Four types of recurrent patterns were observed: a large recurrent stream, a recurrent slow (quiet) flow, a rapidly evolving flow, and a recurrent compound stream. There recurrent streams were not stationary, for although the sources recurred at approximately the same longitudes on successive rotations, the shapes and latitudinal patterns changed from one rotation to the next. A type of magnetic field and plasma structure characterized by a low ion temperature and a high magnetic field intensity is described as well as the structures of stream boundaries between the sun at approximately 0.3 AU
On the polarization state of hydromagnetic fluctuations in the solar wind
From presently available observations it can be inferred that the Alfvenic turbulence measured in the solar wind, predominantly on trailing edges of high speed streams, is a mixture of modes with two different polarizations, namely, Alfvenic modes and modes which are the incompressible limit of slow magnetosonic waves. Using Helios 2 magnetic data and a variance analysis, parallel (to the mean field) and perpendicular components of the fluctuations are separated and the possible correlation between such components is studied. Correlations between eigenvalues of the variance matrix are also investigated and discussed
- …
