28 research outputs found

    Data from: Crowds replicate performance of scientific experts scoring phylogenetic matrices of phenotypes

    No full text
    Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of the non-expert students, or “citizen scientists.” Crowdsourcing, or data collection by non-experts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by non-expert crowds is, however, often questioned and little data has been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 non-experts, and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared to scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a non-expert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and non-experts. We show that there are important instances in which crowd consensus is not a good proxy for correctness

    Data from: Crowds replicate performance of scientific experts scoring phylogenetic matrices of phenotypes

    No full text
    Scientists building the Tree of Life face an overwhelming challenge to categorize phenotypes (e.g., anatomy, physiology) from millions of living and fossil species. This biodiversity challenge far outstrips the capacities of trained scientific experts. Here we explore whether crowdsourcing can be used to collect matrix data on a large scale with the participation of the non-expert students, or “citizen scientists.” Crowdsourcing, or data collection by non-experts, frequently via the internet, has enabled scientists to tackle some large-scale data collection challenges too massive for individuals or scientific teams alone. The quality of work by non-expert crowds is, however, often questioned and little data has been collected on how such crowds perform on complex tasks such as phylogenetic character coding. We studied a crowd of over 600 non-experts, and found that they could use images to identify anatomical similarity (hypotheses of homology) with an average accuracy of 82% compared to scores provided by experts in the field. This performance pattern held across the Tree of Life, from protists to vertebrates. We introduce a procedure that predicts the difficulty of each character and that can be used to assign harder characters to experts and easier characters to a non-expert crowd for scoring. We test this procedure in a controlled experiment comparing crowd scores to those of experts and show that crowds can produce matrices with over 90% of cells scored correctly while reducing the number of cells to be scored by experts by 50%. Preparation time, including image collection and processing, for a crowdsourcing experiment is significant, and does not currently save time of scientific experts overall. However, if innovations in automation or robotics can reduce such effort, then large-scale implementation of our method could greatly increase the collective scientific knowledge of species phenotypes for phylogenetic tree building. For the field of crowdsourcing, we provide a rare study with ground truth, or an experimental control that many studies lack, and contribute new methods on how to coordinate the work of experts and non-experts. We show that there are important instances in which crowd consensus is not a good proxy for correctness

    Platydoras brachylecis, a new species of thorny catfish (Siluriformes: Doradidae) from northeastern Brazil

    No full text
    Platydoras brachylecis, new species, is described from coastal drainages of northeastern Brazil (Pindaré to Parnaíba rivers), and diagnosed from congeners by the unique combination of: pale yellow to white stripe beginning above orbits, continuing midlaterally on body and onto middle rays of caudal fin; skin in axil of each midlateral thorn without concentration of pigment forming small dark spot, midlateral scutes shallow (depth of 10th scute 8.8-11.9% of SL), and midlateral scutes on caudal peduncle distinctly separated by strip of skin from middorsal and midventral caudal-peduncle plates. Three additional species of Platydoras are recognized as valid: P. armatulus (lower Orinoco, Amazon and Paraguay-Paraná drainages), P. costatus (coastal drainages of Suriname and French Guiana), and P. hancockii (upper Orinoco, Negro, Essequibo and Demerara drainages). The nominal species P. dentatus and P. helicophilus are tentatively treated as junior synonyms of P. costatus. A key to species of Platydoras is provided

    Appendix 3 Anemones-character-taxon-results

    No full text
    Online Appendix 3. Sea anemones character scores. For each character and taxon in the anemones matrix, we show the probability (“Estimate”) that a crowd member’s score would agree with the majority vote of the crowd. We also show the lower confidence interval on this probability (ci.lower), which is the crowd confidence score. Finally, we indicate whether the majority vote was correct, and compute an ROC curve for the crowd’s scores. The Threshold Plot worksheet provides a visualization of this information
    corecore