16 research outputs found

    Near-monochromatic tuneable cryogenic niobium electron field emitter

    Full text link
    Creating, manipulating, and detecting coherent electrons is at the heart of future quantum microscopy and spectroscopy technologies. Leveraging and specifically altering the quantum features of an electron beam source at low temperatures can enhance its emission properties. Here, we describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K. The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV due to tunable resonant tunneling field emission via localized band states at a nano-protrusion's apex and a cut-off at the sharp low-temperature Fermi-edge. This is an order of magnitude lower than for conventional field emission electron sources. The self-focusing geometry of the tip leads to emission in an angle of 3.7 deg, a reduced brightness of 3.8 x 10exp8 A/(m2 sr V), and a stability of hours at 4.1 nA beam current and 69 meV energy width. This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.Comment: to be published in Phys. Rev. Lett. (2022

    Design for a high resolution electron energy loss microscope

    No full text
    International audienceAn electron optical column has been designed for High Resolution Electron Energy Loss Microscopy (HREELM). The column is composed of electron lenses and a beam separator that are placed between an electron source based on a laser excited cesium atom beam and a time-of-flight (ToF) spectrometer or a hemispherical analyzer (HSA). The instrument will be able to perform full field low energy electron imaging of surfaces with sub-micron spatial resolution and meV energy resolution necessary for the analysis of local vibrational spectra. Thus, noncontact, real space mapping of microscopic variations in vibrational levels will be made possible. A second imaging mode will allow for the mapping of the phonon dispersion relations from microscopic regions defined by an appropriate field aperture

    Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    No full text
    <div><p>DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.</p></div
    corecore