21 research outputs found

    Minerals from New York State: Pegmatites

    No full text

    Support System for Decisions Useful in Insurances Area

    No full text
    The purpose of the study is reprezented by the identification of the actual methods and the assessment of the future methods of evaluation and underwriting of the risks in the sector of the insurances, for identifying the ways of increase of the performances on this domain. The intended objectives are, as follows: the identification of some analytical methods of qualitative analysis and of the quantification of the risks on the domain of the insurances of goods; the accuracy of the risk-situation evaluation; the improvement of the times for analysing the risk and the elaboration of the decision; the fundamental support for subscribing online for insurances, the elaboration of an application destinated to establish the character as possible or impossible to be insured of an objective, and also the offer of some recommendations with improving character for the objectives exposed to some risk situations at the limit of the threshold of insuring possibility.decisions, decisional processes, risk and uncertainty, insurable risks, support system for decision, decision assistance, insurance, finance

    Editorial for Special Issue “Minerals of the Southern Grenville Province”

    No full text
    The southern Grenville Province is famous for both the large number of mineral localities and the diversity of the mineral species found [...

    Lead isotope signatures of epithermal and porphyry-type ore deposits from Romanian Carpathians Mountains.

    No full text
    Lead isotope analyses have been performed on the two major Miocene mining districts of Romania, Baia Mare and Apuseni Mountains. These two districts have different non-overlapping 206Pb/204Pb isotopic signatures ranging from 18.752 to 18.876 and 18.497 to 18.740. In the Baia Mare district, epithermal deposits are overall homogeneous in their lead isotopic compositions and have values similar to the average of the calc-alkaline volcanic rocks. These results suggest a magmatic signature for the Pb (and possibly other metals) in the hydrothermal fluids. However, magmas in this district show isotopic evidence of crustal assimilation. In the southern Apuseni Mountains, the lead isotope compositions of sulfide minerals in porphyry copper deposits are clustered, confirming that Pb, and probably other metals, were derived principally from associated porphyry stocks. On the other hand, lead isotope data on sulfides in epithermal ore deposits are much more scattered, indicating a notable contribution of Pb from local country rocks. In the Apuseni Mountains, 'fertile' volcanics are few and appear to come from a more primitive mantle-derived source. Most of the analysed volcanic rocks seem 'barren'. Differences in lead isotopic compositions between the Baia Mare district and the Apuseni Mountains are due to a different basement, and probably to variations in crustal assimilation superimposed on variations in the mantle source composition. In the Apuseni Mountains, Pb may be partly inherited from the previous Mesozoic magmatic-hydrothermal stage. From a geodynamic point of view, it seems that the nature and the source of volcanic rocks and their position related to the collision area of the Carpathian arc are not the only factors controlling the 'fertility' of a volcanic district

    Mineralogy of Chub Lake-Type Hematite Deposits in St. Lawrence County, NY

    No full text
    Numerous localities of specular hematite have been found in the Grenville Province in St. Lawrence County, New York. Here, we focus on six of them: the Dodge mine, the Chub Lake prospect, the Toothaker Creek prospect, the Bowman prospect, the Whitton prospect, and the Toothaker Pond prospect. We used literature research, interviews, and personal observations to establish the history of each site as a source of mineral specimens. We examined extensive holdings of specimens from each site in the New York State Museum. We used sight identification, chemical tests, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy as necessary to identify all the mineral species present. We had determinations made of the stable oxygen isotope content of quartz, hematite, and calcite from the Chub Lake prospect, reported as 18O relative to Vienna Standard Mean Ocean Water (VSMOW). We conclude that these occurrences formed from groundwaters at a temperature of about 170 °C in areas of low topography on the surface of the Precambrian basement rocks. Two hypotheses for this process are presented and evaluated. Well-crystallized specimens of bladed specular hematite and Cumberland-habit quartz are the most common minerals found. Noteworthy accessory crystallized minerals include barite, calcite, and goethite. All six deposits are relatively free of sulfides, so that secondary goethite formed from weathering of iron-rich carbonates at some sites. It is likely that more such deposits will be discovered in this region in the future

    Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region

    No full text
    Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in long dimension. Minor and locally abundant phases reflect local bedrock compositions and include albite, apatite, perthitic microcline, phlogopite, zircon, tourmaline, titanite, danburite, uraninite, sulfides, and many other minerals. Across the Adirondack Region, individual exposures are of limited aerial extent (<10,000 m2), crosscut metasedimentary rocks, especially calc–silicate gneisses and marbles, are undeformed and are spatially and temporally associated with granitic pegmatites. Zircon U–Pb results include both Shawinigan (circa 1165 Ma) and Ottawan (circa 1050 Ma) intrusion ages, separated by the Carthage-Colton shear zone. Those of Shawinigan age (Lowlands) correspond with the timing of voluminous A-type granitic magmatism, whereas Ottawan ages (Highlands) are temporally related to orogenic collapse, voluminous leucogranite and granitic pegmatite intrusion, iron and garnet ore development, and pervasive localized hydrothermal alteration. Inherited zircon, where present, reflects the broad range of igneous and detrital ages of surrounding rocks. Carbon and oxygen isotopic ratios from calcite plot within a restricted field away from igneous carbonatite values to those of typical sedimentary carbonates and local marbles. Collectively, these exposures represent a continuum between vein-dyke and skarn occurrences involving the anatexis of metasedimentary country rocks. Those of Ottawan age can be tied to movement and fluid flow along structures accommodating orogenic collapse, particularly the Carthage-Colton shear zone

    Columbite-Group Minerals from New York Pegmatites: Insights from Isotopic and Geochemical Analyses

    No full text
    Columbite crystals from niobium-yttrium-fluorine (NYF) pegmatites lacking zircon or containing metamict cyrtolite were analyzed for major and minor elements (Electron Microprobe (EMP)), trace elements (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)), and U-Pb geochronology (Laser AblationMulti-Collector-Inductively Coupled Plasma-Mass Spectrometry (LA-MC-ICP-MS)). All four pegmatite localities sampled are hosted by the Proterozoic Fordham gneiss and/or Paleozoic Bedford gneiss (Columbite-(Fe); Kinkel and Baylis localities) and the Manhattan Schist of Lower Paleozoic age (Columbite-(Mn); Fort George and Harlem River Drive localities) and yield Neoacadian ages. The weighted average U-Pb ages are 372.2 +/- 8.2 Ma (Baylis Quarry), 371.3 +/- 7.3 and 383.4 +/- 8.9 Ma (Kinkel Quarry); 383 +/- 15 Ma (185th St. and Harlem River Drive); and 372 +/- 10 Ma (Fort George). A partial metamict zircon (cyrtolite) from the Kinkel Quarry yielded a weighted average U-Pb age of 376.9 +/- 4.3 Ma. The Neoacadian ages obtained agree with those determined by thermal ionization mass spectrometry (TIMS) for zircon from Lithium-Cesium-Tantalum (LCT) pegmatites from Connecticut and Maine. No pegmatites temporally associated with the Taconic orogeny were found. The size, lack of common Pb, uniform U concentrations across crystal cross-sections, sufficient but moderate uranium concentrations, lack of metamictization, and consistency in U-Pb isotopic ratios for columbite samples BCB-COL, NYSM #25232, and NYSM #525.8 suggests they show promise as potential standards for oxide mineral LA-MC-ICP-MS geochronological analyses, however, additional characterization using ID-TIMS would be necessary to develop as such.New York State Museum [1649254]; James Street Fund at St. Lawrence University [1649254]; National Science Foundation NSF [1649254]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore