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Abstract: Monazite crystals, intergrown with allanite, fluorapatite, and quartz from the Cheever Mine
iron oxide-apatite (IOA-type) deposit in Essex County, New York, USA, display rare symplectite
textures. Electron probe wavelength-dispersive spectrometry (WDS) mapping and major and trace
element characterization of these features reveal a natural experiment in fluid-mediated monazite
recrystallization. Two types of monazite with symplectite intergrowths have been recognized (Type I
and II). Both types of symplectite development are associated with a decrease in HREE, Si, Ca, Th,
and Y, but an increase in both La and Ce in monazite. Electron microprobe Th-U-total Pb analysis of
Type I monazite with suitable ThO2 concentrations yielded a weighted mean age of 980 ± 5.8 Ma
(MSWD: 3.3), which is interpreted as the age of monazite formation and the onset of symplectite
development. Both types of monazite formed during a series of reactions from fluorapatite, and
possibly britholite, to produce the final assemblage of monazite, allanite, and fluorapatite. Monazite
formation was likely a response to evolving fluid conditions, which favored monazite stability over
fluorapatite at ca. 980 Ma, possibly a NaCl brine. A subsequent transition to a Ca-dominated fluid
may have then promoted the consumption of monazite to produce another generation of allanite
and fluorapatite. Our results indicate that recrystallized monazite formed during fluid-mediated
processes that, over time, trended towards an increasingly pure end-member composition. Regionally,
these data are consistent with a magmatic-origin followed by fluid-mediated remobilization of select
phases at subsolidus conditions for the Adirondack IOA deposits.

Keywords: monazite; metasomatism; IOA-deposit; Adirondack Mountains

1. Introduction

Monazite is a commonly used geochronometer with a principal application to mid- to high-grade
metamorphic rocks [1]. It is a LREE-bearing orthophosphate and participates in, and can thus monitor,
many metamorphic reactions making it an invaluable tool for metamorphic petrologists [2]. It is also
known to occur in lower grade rocks, in many cases associated with fluid alteration. As such, monazite
may also provide a record of metasomatic events via fluid-mediated dissolution–reprecipitation [2,3],
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although the literature on low-grade, fluid-related monazite is less abundant [4,5]. A better
understanding of monazite associated with lower grade or retrograde terranes and fluid alteration
may provide new constraints and tools for analysis of fluid–rock interaction, fault timing and basin
development, and the formation of associated ore-deposits.

Iron oxide-apatite (IOA) type deposits, a subset of iron oxide copper gold (IOCG) deposits,
are particularly relevant to the study of monazite in lower-grade fluid-alteration environments [6,7].
IOA deposits typically contain abundant monazite, and most recognized subvolcanic systems have
associations with fluid-mediated processes, and therefore provide natural laboratories to understand
monazite stability and composition in the presence of different fluids under varying geologic
(pressure–temperature (P–T)) conditions. Although the extrusive El Laco IOA-type system has been
interpreted as a predominately magmatic system, distinguishing the role of subsurface fluids on
magma evolution persists as a major problem in discerning the complex geologic history associated
with these deposits [8]. Of particular importance to this study are monazite within IOA-deposits not
associated with any recognized volcanic activity in the Adirondack Mountains of New York, USA.
The deposits of the Adirondack Mountains have been analyzed via zircon U-Pb methods [9–11], major
and accessory phase textural analysis [10], in-situ major and trace element analysis [12], and other
local isotopic analyses [13]. Here we incorporate experimental work from IOA-systems with in-situ
monazite Th-U-total Pb petrochronology to better characterize the processes and timing recorded by
monazite in a deeper (higher Pressure) IOA-type system.

The Adirondack Mountains in the southern Grenville Province host numerous Kiruna type iron
oxide-apatite (IOA-type) deposits, all of which are associated with extensive metasomatism. Mined
throughout the 1800 and 1900s for iron, tailings piles of REE-bearing fluoroapatite in the Mineville
area have rejuvenated economic interest in these deposits, and are the focus of current exploration [14].
The Cheever deposit (Port Henry, NY; Figure 1) contains, at present, the highest recognized modal
abundance of REE-bearing phases, and is of particular interest. The deposit consists of many different
mineral types, all preserving a wide array of reaction textures [12]. Monazite is common in the Cheever
deposit in association with allanite, fluorapatite, and quartz. The monazite and other REE-bearing
minerals occur in a variety of textural settings including symplectite intergrowths that preserve a
textural a record of a protracted alteration history. Herein we describe and present detailed phase
compositions from monazite and associated fluorapatite and allanite, as well as Th-U-total Pb monazite
petrochronology, of samples from the Cheever IOA-deposit as a companion contribution to other recent
publications on the topic [11,12]. The textures are interpreted to have formed as part of two multi-step
reaction sequences that occurred nearly simultaneously as a result of evolving fluid conditions long
after ore-formation [9,11].
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Figure 1. Detailed bedrock geology map from the Cheever Mine (modified from [11]). Inset: 
Simplified geologic map of the Adirondack region (modified after [11] and references therein) with 
the distribution of the Lyon Mountain Granite gneiss in red and inset displaying map relative to the 
Grenville Province and Lake Ontario. Star marks the sample. IOA: iron oxide-apatite; LMG: Lyon 
Mountain granite gneiss. 

2. Geologic Setting 

The Adirondack Highlands of northern New York form the southern extension of the contiguous 
Mesoproterozoic Grenville Province (Figure 1) [15]. Basement rocks have been multiply deformed 
and are thought to have undergone regional granulite facies metamorphism during the Shawinigan 
and Ottawan orogenies over 1 billion years ago [16]. The Lyon Mountain granite gneiss (LMG) was 
emplaced during the waning phases of granulite-facies metamorphism along the eastern and 
northern margins of the Adirondack Highlands, particularly where extensional structures related to 
orogenic collapse have been observed [17,18]. U-Pb zircon geochronology from the LMG has constrained 
an igneous crystallization age of ca. 1070–1030 Ma [10,17,19,20]. The LMG is typically weakly deformed 
to undeformed and is thought to post-date peak P–T conditions and regional deformation [14–16]. It 
is interpreted to have been emplaced during extensional collapse of the orogen at approximately 
1070–1030 Ma [10,17–20]. Directly relevant to this study are the low-Ti, IOA deposits that are primarily 
hosted by the LMG.  

The genesis and timing of ore formation relative to igneous crystallization of the adjacent LMG 
is uncertain, with models interpreting either a magmatic [11] or a later, hydrothermal [20], origin. 
Valley et al. [9,20] utilized U-Pb and Hf isotopic compositions of zircon to suggest that at least some 

Figure 1. Detailed bedrock geology map from the Cheever Mine (modified from [11]). Inset: Simplified
geologic map of the Adirondack region (modified after [11] and references therein) with the distribution
of the Lyon Mountain Granite gneiss in red and inset displaying map relative to the Grenville Province
and Lake Ontario. Star marks the sample. IOA: iron oxide-apatite; LMG: Lyon Mountain granite gneiss.

2. Geologic Setting

The Adirondack Highlands of northern New York form the southern extension of the contiguous
Mesoproterozoic Grenville Province (Figure 1) [15]. Basement rocks have been multiply deformed
and are thought to have undergone regional granulite facies metamorphism during the Shawinigan
and Ottawan orogenies over 1 billion years ago [16]. The Lyon Mountain granite gneiss (LMG) was
emplaced during the waning phases of granulite-facies metamorphism along the eastern and northern
margins of the Adirondack Highlands, particularly where extensional structures related to orogenic
collapse have been observed [17,18]. U-Pb zircon geochronology from the LMG has constrained an
igneous crystallization age of ca. 1070–1030 Ma [10,17,19,20]. The LMG is typically weakly deformed
to undeformed and is thought to post-date peak P–T conditions and regional deformation [14–16].
It is interpreted to have been emplaced during extensional collapse of the orogen at approximately
1070–1030 Ma [10,17–20]. Directly relevant to this study are the low-Ti, IOA deposits that are primarily
hosted by the LMG.

The genesis and timing of ore formation relative to igneous crystallization of the adjacent LMG
is uncertain, with models interpreting either a magmatic [11] or a later, hydrothermal [20], origin.
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Valley et al. [9,20] utilized U-Pb and Hf isotopic compositions of zircon to suggest that at least some
mineralization accompanied Na-fluid metasomatism as much as 40 million years after crystallization
of the LMG (ca. 1015 Ma) [9]. In contrast, field relationships and ore textures indicate an igneous
component to ore formation [11]. It seems likely that multiple generations of iron mineralization
are present, the relative timing of which may be obscured by subsequent metasomatic alteration
and iron remobilization (see Section 6). The deposits and adjacent LMG have undergone extensive
sodic metasomatism that caused widespread albitization of the microperthitic LMG protolith to a
quartz-albite rock [19]. Planar to folded ore bodies range in size, continuity, state of deformation [21,22],
and REE abundance [22]. The Cheever IOA deposit 3.5 km north of Port Henry, NY contains the
highest modal fluorapatite and REE concentrations currently known in the Adirondack Mountains,
and is the focus of this study. Interestingly, IOA-type deposits of the eastern Adirondack Mountains
are distinctive amongst otherwise similar IOA deposits because Adirondack examples lack volcanic
equivalents and may represent deeper, mid-crustal examples of such systems.

Recent work on the textural evolution of fluorapatite, REE abundances, and zircon U-Pb
systematics have been reported from the Cheever deposit [11,12]. Lupulescu et al. [12] described
and reported detailed phase compositions from multiple assemblages that formed as a result of
fluid-mediated processes preserved in the Cheever IOA-type deposit. The main conclusion was that
coarse REE-enriched fluorapatite crystals formed within a late-magmatic setting from an iron and
phosphorous-rich melt that formed via liquid-immiscibility [23]. Subsequent fluid-flow, presumably
at greenschist-facies conditions lead to a secondary assemblage of low-actinide monazite, chlorite,
ferro-actinolite, rutile, and hematite, among other phases discussed herein. Other late phases
recognized here are allanite and another generation of fluorapatite. These interpretations [12] are
consistent with zircon U-Pb geochronology from samples of both ore, quartz-albite host rock, and
pegmatites associated with the Cheever mineral deposit [9–11,17,19]. Zircon U-Pb results indicate
that rocks associated with the Cheever deposit formed via igneous crystallization toward the tail-end
of LMG crystallization, consistent with a late-stage magmatic origin for the deposit, similar to other
deposits [7].

3. Sample Description

Two samples were collected from contacts of magnetite-apatite ores with host quartz-albite
rock located at the historic Cheever Mine in Port Henry, NY (Essex County; N 44◦04′43.5′′;
W 73◦27′14.3′′) [24]. The ore seam is on the order of several meters thick, strikes N–S and dips
moderately to the west, continuing for more than 3 km along strike. It is located near the contact
between the LMG and a complex suite of mylonitic granitoids, metagabbros, and paragneisses,
including marble. The ore seam is host to a variety of REE-bearing phases including fluorapatite,
stillwellite, allanite, monazite, titanite, and hematite [24]. All host rocks within the vicinity of the ore
have undergone some amount of sodic alteration or interaction with NaCl brines [19,20]. The main
magnetite seam is exceedingly straight, and located within a small lens of LMG that delineates the
contact between a ca. 1150 Ma coronitic metagabbro [25,26] east of the ore, and annealed granitic
and amphibolitic tectonites intruding marble and pelitic gneisses to the west (Figure 1) [11,27].
The straight-edged nature of the Cheever deposit, and exposed discontinuities across it may indicate a
fault, or tectonic control of ore emplacement; this will be addressed in detail in a future contribution.
In contrast the deposits at Hammondville (20 km to the south) are folded by open, upright folds that
are interpreted to be syn-kinematic with respect to LMG intrusion [10,28], consistent with a magmatic
component to ore formation.

Microscopically, the contact of the Cheever ore seam with the quartz-albite host rock follows
individual grain boundaries—grain truncations are lacking. The edge of the ore seam often contains
a thin veneer of allanite that maintains an almost constant thickness (ca. 20 µms) between host
rock and the magnetite seam consistent with a petrogenetically late-origin. The veneer of allanite
is also present along many grain boundaries within the deposit, and provides a useful marker to
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trace magnetite–magnetite grain boundaries. Clinopyroxene occurs locally and is restricted to the
host rock and ore near the margin of the seams. No zircon has been found in-situ within the ore to
evaluate textural relationships, but within the immediately adjacent quartz-albite host rock, zircon
is abundant with single crystals up to 500 µm in length. The ore seam consists of over 25 modal %
REE bearing phases, which vary in abundance spatially, with the remainder of the ore composed of
magnetite and hematite and quartz. All REE-phases, however, contain irregular inclusions, lamellae,
symplectite intergrowths, and rims of other REE-bearing phases. The most common association is
coarse fluorapatite grains with thick topotaxial monazite and rims of allanite around fluorapatite [7].
Of interest to this study, however, are coarse monazite grains that preserve a variety of internal
symplectite textures involving allanite, fluorapatite, and a later generation of monazite, with textures
similar to those described from experimental work [29,30].

Monazite occurs primarily in two textural settings. Both contain complex reaction textures
and mineral associations. The first (Type-I) includes monazite grains and inclusions in and around
relatively coarse subhedral fluorapatite crystals. Most of the Type-I monazite grains contain variably
developed symplectite textures within their cores, where the monazite is intergrown with an
allanite-fluorapatite-quartz assemblage (Figure 2). The second setting (Type-II) involves multiphase
pseudomorphs after a relatively coarse precursor phase. Type-II monazite grains are completely and
complexly intergrown with allanite, (Figure 3). The pseudomorphs containing Type-II monazite are
surrounded by fluorapatite and allanite rims (Figure 4).
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Figure 2. Wavelength-dispersive spectrometry (WDS) results for Type-I monazite. (a–e) WDS Th
Mα and Y Lα beam maps of Type-I monazite; (d) U-Th-total Pb geochronology results plotted as
Gaussian distributions with corresponding ThO2 and SiO2 wt. % from all type-I monazite crystals seen
in histograms; dashed lines represent average composition from Type-II monazite.
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Figure 4. Close up WDS maps of Type II monazite showing relict zoning and intergrown apatite,
allanite, and monazite. X-ray line labeled in lower left of each image (a–d).

4. Analytical Methods

Monazite grains were identified in polished thin sections by full thin-section compositional
mapping with the Cameca SX-50 electron microprobe at the University of Massachusetts, Amherst,
MA, USA. All analytical procedures were performed with a 15.0 KeV accelerating voltage.
Five spectrometers were set to Mg, Y, La, Zr, and Fe with 30 µm beam size at 300 nA current, a 25 ms
dwell time, and the whole thin section was scanned. Individual grains were mapped with a beam
size between 2 and 4 µm, a step size set equal to the beam size, and current of 200 nA. Higher
resolution images of full crystals less than 200 µm and targeted regions of large crystals were mapped
by keeping the stage fixed, and rastering a focused beam across the desired region, thus achieving
sub-µm resolution. All grain maps were performed with spectrometers set to Y, Si, Th, U, and Ca.

Major and trace element analyses of monazite were performed on the Cameca “Ultrachron”
Electron Microprobe at the University of Massachusetts, Amherst, equipped with five spectrometers
including two VLPET, two LPET, and LLIF monochromators [31]. Analyses were performed for U, Th,
Pb, S, Ca, K, Sr, Si, Y, P, and REEs using a PAP method for matrix corrections [32]. Each reported analysis
is an average of 4–8 individual peak analyses; background was measured on the first analytical spot [33].
Background values for U, Th, and Pb were measured using a multipoint method [33]. Standardization
was performed on natural and synthetic standards [31,33]. Analyses of an internal standard, Moacyr
(Age: 506 +/− 1 Ma) [34], were carried out before, after, and throughout the analytical sessions to
monitor consistency.

Major and trace element analysis of allanite was performed on the Cameca SX-100 Electron
Microprobe at Rensselaer Polytechnic Institute, equipped with five spectrometers including four LPET,
two LLIF, and two TAP monochromators. Analyses were performed for Si, Al, Mg, Y, Fe, Mn, Ca, Sr,
Th, and REEs using a PAP method for matrix corrections [32], with background determined by 2-point
interpolation. Standardization was performed using natural and synthetic standards (for analytical
conditions see [12]). Analyses of an in-house allanite standard were also performed.
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5. Results

5.1. Type-I Monazite (Sample VGA-14)

Sample VGA-14 is dominated by quartz-albite rock (albitized microperthite granite) [9] and
contains a magnetite-apatite seam approximately five mm in thickness. Type-I monazite commonly
occurs as rims (several hundred microns wide) around coarse fluorapatite crystals within the host
quartz-albite rock (Figure 2a–e). Symplectite intergrowths are generally restricted to the cores of
monazite grains (Figure 2a–e). Symplectite intergrowths [35] consist of monazite, allanite, and
fluorapatite. Twelve sets of analyses were acquired from this monazite generation to determine
age and composition (Figure 2f).

Type-I monazite grains are, on average, approximately 200 µm in diameter, have bright
back-scattered electron (BSE) signals, and relatively high ThO2 contents (3.5–6.5 wt. %; see Table 1
for monazite compositions). Concentrations of Y2O3 are between 0.55 and 0.8 wt. % (average: 0.67;
1σ of 0.04). All samples have CaO + SiO2 concentrations over 1.2 wt. %. A systematic decrease in
Ca, Si, Th, U, and As occurs from the transition of Type-I monazite to monazite within symplectite
domains, corresponding to an increase in La, Ce, and P. Owing to a high ThO2 content, the grains
belonging to this group produced robust geochronologic results, which yielded a weighted date of
980 ± 5.8 Ma (MSWD: 3.3; Figure 2f). These data are interpreted to suggest that the host monazite,
and the symplectite, formed long after ore formation (ca. 1033.6 ± 2.9 Ma U-Pb zircon Cheever
Mine) [11].

Fluorapatite analyses (Table 2) from the coarse crystals overgrown by Type-I monazite contain
high F contents (>3.0 wt. %). Lanthanum concentrations vary, but consistently approach 5.0 wt. % in
the core, i.e. farthest from the monazite rim. Cerium also varies, ranging from 2.0 to over 6.5 wt. %,
again increasing toward the core of the fluorapatite grains. These data suggest that Type-I monazite
may have formed at the expense of originally LREE-rich flourapatite crystals [12,36].
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Table 1. Monazite major and trace element results.

VGA-14: Type I Monazite 4UR-015: Type II Monazite

Sample M1-1 M2-1 M2-2 M2-3 M2-4 M1-3 M1-4 M1-5 M1-2 M1-6 M3-1 M3-2 Core1 Core2 Core3 Rim1 Rim2 Core4 Core5

P2O5 28.49 28.00 28.92 28.38 28.68 28.93 28.34 28.05 28.49 29.22 27.38 29.05 28.90 28.77 28.80 28.82 28.87 28.94 29.10
SiO2 1.26 1.41 1.04 1.15 1.00 1.07 1.47 1.60 1.40 1.03 1.84 1.12 0.54 0.51 0.53 0.65 0.85 0.51 0.51
SO3 0.03 0.03 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.00 0.02 0.01 0.09 0.05 0.06 0.05 0.09 0.06 0.06

ThO2 4.51 5.33 3.68 4.08 3.50 3.48 4.94 5.62 4.79 3.00 6.29 3.93 0.41 0.51 0.46 1.03 1.47 0.46 0.45
UO2 0.12 0.14 0.14 0.15 0.14 0.12 0.13 0.14 0.13 0.12 0.16 0.13 0.02 0.04 0.05 0.04 0.02 0.06 0.05
Y2O3 0.66 0.61 0.67 0.62 0.67 0.70 0.67 0.65 0.65 0.74 0.65 0.76 0.11 0.17 0.17 0.14 0.08 0.16 0.15

As2O3 0.16 0.09 0.18 0.14 0.13 0.14 0.12 0.11 0.18 0.13 0.13 0.13 0.26 0.21 0.36 0.23 0.26 0.42 0.30
La2O3 20.90 20.90 20.52 21.52 20.61 20.87 21.22 21.22 21.54 20.69 21.04 20.11 28.59 23.82 25.28 25.32 30.58 25.78 26.32
Ce2O3 31.54 31.52 32.81 32.27 32.79 32.79 31.68 31.38 31.85 33.23 31.04 32.55 33.21 34.87 34.78 34.33 31.31 34.81 34.56
Pr2O3 2.51 2.46 2.66 2.53 2.61 2.65 2.50 2.48 2.47 2.74 2.46 2.69 1.94 2.45 2.36 2.28 1.71 2.35 2.25
Nd2O3 8.34 8.17 8.84 8.37 8.82 8.96 8.40 8.20 8.28 9.21 8.10 9.26 5.11 6.91 6.52 6.34 4.27 6.38 6.06
Sm2O3 0.17 0.18 0.21 0.18 0.21 0.25 0.27 0.20 0.20 0.27 0.21 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Eu2O3 0.07 0.06 0.05 0.06 0.06 0.10 0.11 0.09 0.09 0.08 0.08 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gd2O3 0.45 0.46 0.50 0.45 0.49 0.51 0.50 0.41 0.34 0.52 0.42 0.53 0.10 0.27 0.28 0.24 0.04 0.28 0.11
Tb2O3 0.01 0.01 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Dy2O3 0.14 0.12 0.15 0.14 0.13 0.14 0.14 0.14 0.12 0.13 0.13 0.17 0.01 0.03 0.02 0.03 0.00 0.03 0.02
Er2O3 0.04 0.04 0.05 0.05 0.03 0.06 0.05 0.03 0.03 0.04 0.03 0.06 0.00 0.02 0.03 0.01 0.00 0.03 0.00
Tm2O3 0.07 0.04 0.06 0.06 0.06 0.07 0.04 0.04 0.03 0.05 0.04 0.08 0.03 0.04 0.05 0.02 0.00 0.06 0.04
Yb2O3 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.04 0.01
CaO 0.10 0.12 0.11 0.10 0.12 0.09 0.12 0.10 0.10 0.10 0.10 0.12 0.04 0.04 0.07 0.07 0.07 0.06 0.04
PbO 0.21 0.24 0.18 0.20 0.17 0.16 0.22 0.26 0.22 0.14 0.29 0.18 0.02 0.03 0.03 0.05 0.07 0.03 0.02
Total 99.85 99.99 100.76 100.41 100.26 101.09 100.97 100.72 100.93 101.43 100.37 101.33 99.41 98.75 99.97 99.69 99.72 100.53 100.07

Age (Ma) 992 968 981 989 975 971 966 985 982 960 978 968 947 994
2σ 7 15 9 12 14 13 17 8 21 15 7 10 18 18
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5.2. Type-II Monazite (Sample 4UR-015)

Type-II monazite occurs exclusively within the magnetite seam and consists of complex
intergrowths of monazite, allanite, fluorapatite, and quartz (Figure 3a). There are several discrete
fractures throughout the seam that contain vermicular symplectites of allanite and several other
fine-grained silicates, including epidote, chlorite, allanite, and talc. These fractures appear to have
been conduits for late stage fluids. Nearly all monazite is complexly intergrown with other phases,
and is thus interpreted to have formed from a precursor phase [35]. Individual monazite lamallae
are 3 to 100 µm wide (Figure 3f–h). As discussed below, the Type-II intergrowths are interpreted to
be pseudomorphs of pre-existing crystals that ranged from approximately 0.5 to 4.0 mm in length
(Figure 3b–e). Several of the Type-II monazite bearing pseudomorphs themselves have rims (up to
50 um) of intergrown allanite and fluorapatite without any monazite (Figure 4). Seven sets of analyses
were performed to characterize the Type-II monazite compositions.

Type-II monazite is bright in back-scattered electron images relative to the associated allanite,
apatite, and magnetite. However, in contrast to the Type-I monazite, the Type II monazite contain less
than 1.4 wt. % ThO2 (average UO2 + ThO2 = 0.72; 1σ of 0.40), less than 0.18 wt. % Y2O3 (average = 0.14;
1σ of 0.03), and a small range of SiO2 + CaO, with an average of 0.64 wt. % (1σ of 0.14). Due to low
total actinide concentrations, Pb concentrations were near detection limit for five out of seven analyses,
and thus total Pb ages could not be reliably calculated. Two sets of analyses yielded ThO2 just over
1.0 wt. % and U-Th-total Pb ages of 947 ± 18 Ma and 994 ± 18 Ma, the older of which is within error of
the weighted mean calculated from the Type-I monazite. Given the results and textures preserved in
the Type-I monazite, we conclude that ca. 980 Ma is a reasonable constraint on monazite formation
and initial symplectite development, but no constraints on the lower age limit were acquired.

Table 2. Major and Trace element results from allanite and fluorapatite.

Sample FAp-1 FAp-2 FAp-3 Aln-1 Aln-2 Aln-3 Aln-4

P 16.4 13.81 13.39 na na na na
Si 1.21 2.31 2.42 13.07 13.57 13.32 13.17
Th na na na 0.06 0.01 0.04 bd
Y 1.49 2.74 0.89 0.13 0.11 0.10 0.09
La 0.29 0.58 4.04 9.07 8.00 10.25 9.18
Ce 1.23 2.55 6.65 11.14 11.80 10.83 11.40
Pr 0.27 0.61 1.03 1.81 1.89 2.01 1.91
Nd 1.42 2.68 2.27 1.79 2.38 1.50 1.76
Sm 0.19 0.36 0.16 0.03 0.02 Bd bd
Gd 0.37 0.64 0.14 bd bd bd bd
Dy 0.24 0.45 0.09 bd bd bd bd
Fe 0.20 0.36 0.33 16.41 16.46 17.89 18.07
Al na na na 4.70 4.79 3.81 3.77
Na 0.02 0.04 0.16 na na na na
Mg na na na 0.35 0.34 0.31 0.31
Ca 36.05 32.77 29.33 6.58 6.47 6.34 6.36
Mn bd bd 0.02 0.05 0.04 0.05 0.04
Cl 0.29 0.37 0.12 na na na na
F 2.53 2.34 3.44 na na na na

Total 100.30 98.36 100.76 99.29 99.26 98.93 98.54

na: not analyzed; bd: below detection.

Representative analyses of allanite and fluorapatite from these pseudomorphs are presented in
Table 2. Compositions and variability of other REE bearing phases and coarse fluorapatite crystals
have been discussed in a separate contribution [12]. Allanite grains adjacent to Type II monazite
have consistent Si (13.17–13.55 wt. %), Y (~0.1 wt. %), Ca (6.4 wt. %), Ce, Pr, and Th concentrations,
but Al, Fe, La, and Nd have greater variability. Allanite exposed along the rim, locally intergrown
with fluorapatite, also varies considerably in composition, but typically has slightly less Fe and Nd,
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but more La, than allanite associated with Type II monazite within the interior of the pseudomorph
(Figure 4).

All fluorapatite grains analyzed in this study contain over 2.0 wt. % F. Analyses were taken
from the rims of symplectites, which are intergrown with allanite (Figure 4). There are two distinct
populations of fluorapatite within the rim symplectites (Figure 5a–d). The population with slightly
higher F contents contains a higher concentration of pure end-member elements (Ca and P), and lower
concentrations of REE and Y. High-F fluorapatite grains contain significantly less Cl (~0.29 wt. %) than
other fluorapatites, which contain ~0.37 wt. % Cl. Given the compositional variability, even within one
small domain within the symplectite, we interpret an initially heterogeneous, or zoned parent mineral
(see below), that led to the compositionally diverse phases within the pseudomorph.Minerals 2018, 8, x FOR PEER REVIEW  3 of 18 
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6. Discussion

6.1. Compositional Variability and Timing

Two populations of monazite have been identified in and adjacent to IOA “ore” samples from
the Cheever mine. Type I monazite has higher ThO2, CaO + SiO2 (cheralite), and Y2O3 concentrations
relative to Type II monazite. However, near symplectite intergrowths within Type I grains, ThO2,
CaO, SiO2, and Y2O3 all decrease, suggesting that these components are not favored in the monazite
crystal during symplectite formation and monazite recrystallization. U-Th-total Pb geochronology
of these grains yield no resolvable age differences, which suggests that both Type I monazite growth
and subsequent symplectite formation occurred around 980 Ma. Type II monazite has a different
composition and textural evolution than does Type I monazite, a consequence of forming within a
different local compositional environment in the host ore. Two sets of U-Th-total Pb analyses of Type
II monazite grains suggest formation at approximately the same time as the Type I monazite and
subsequent symplectite development in Type I monazite.

Type I monazite commonly forms rims on fluorapatite, has higher Ca + Si and actinide
concentrations, and lower La, Ce, and P than Type II monazite. Fluorapatite cores contain a
heterogeneous distribution of LREEs, which decrease toward rims and topotaxial inclusions of Type I
monazite. This is similar to results obtained in experimental work by [29,30,36–42], and to another
natural occurrence in southwestern Germany [6,42]. Qualitatively, there is far less allanite and more
fluorapatite associated with Type I than Type II monazite. We interpret Type I monazite to have formed
from the fluid-mediated dissolution–reprecipitation of REE-rich fluorapatite [12,29,30,36]. Symplectite
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textures within Type I monazite consist primarily of allanite and fluorapatite, and are interpreted to
represent a monazite consuming reaction.

The compositions of allanite and fluorapatite intergrown with Type II monazite provide a glimpse
into the reaction history recorded in the Cheever IOA-type deposit. Fluorapatite is present as beads
within allanite, and is associated with the rims of the Type II monazite-allanite-bearing pseudomorph.
Both fluorapatite and allanite are compositionally variable, each having distinct major and trace
element compositions, even within a single textural population. However, variability is reproducible.
For instance, within the rim of a symplectite, from outside the Type-II monazite zone (Figure 4),
there are two distinct and reproducible populations of fluorapatite, which vary by over 0.5 wt. % in Y,
Si and F (Table 2).

6.2. Reaction Constraints

Recent experimental work [37] provides potential insight into the reactions observed in
this study. Experiments were performed at a wide range of temperatures (300, 400, 500,
and 600 ◦C), well within the temperature constraints of ore formation within the eastern Adirondack
Mountains, but at substantially lower pressures (100 MPa). These data paired with existing, higher
pressure experiments (450–600 MPa) provide constraints and predictable responses to varying
fluid composition in IOA systems [29,30]. Different proportions of fluorapatite and monazite
were exposed to an H2O + Na2Si2O5 solution. Alteration and recrystallization in both phases
was widespread in experiments at 500 and 600 ◦C, and resulted in the formation of britholite
((Ce,Ca,Th,La,Nd)5(SiO4,PO4)3(OH,F)) and vitusite [Na3(Ce,La,Nd)(PO4)2] [37]. Experiments at 600 ◦C
produced a symplectite at the reaction front consisting of intergrown vitusite and britholite, which both
formed at the expense of monazite.

Metasomatism is commonly invoked for the mobilization and concentration of IOA-type
deposits [7]. Rocks in proximity to IOA-type deposits of the Adirondack Mountains contain
evidence for interacting with sodic fluids that contained elevated ƒO2 [20]. Alkali-bearing fluids
have been experimentally demonstrated to be catalysts for dissolution–reprecipitation reactions in
monazite [7,38,41,42]. Based on the relatively high Cl concentrations in the Fluorapatite, NaCl brines
may have been a predominant fluid in the Cheever system. In general, alkali-fluids cause REE mobility,
which catalyzes further reequilibration and recrystallization [37]. Geochronologic results suggest that
monazite and symplectite formation occurred long after albitization and ore formation, interpreted
as syn-magmatic with the LMG~1050 Ma [10–12]. Textures and mineral assemblages resemble
experimental results of fluid-mediated dissolution–reprecipitation reactions [36–42]. Therefore, the
reactions described here are interpreted to have formed in an open system, which likely involved
alkali-fluids that facilitated the mm-scale mobility of REEs, Si, P, Ca, Na, and Al, among many other
immobile ions, and possibly externally derived soluble species.

In the context of experimental work presented in [37], we interpret the Type II monazite to have
formed via fluid mediated dissolution–reprecipitation of britholite. The initial phase hosting Type
II monazite would have to contain both SiO2 and P2O5 as major anions (Figure 6), consistent with
compositions presented in [37] (SiO2 concentrations of 12.49 to 24.33 wt. %, and P2O5 concentrations
ranging from 9.73 to 15.09 wt. %). Variations in phase composition paired with proportionality
disparities (variations in monazite/allanite proportion) make rigorous reintegration of complexly
intergrown phases difficult (Figure 3h). However, simple averaging of end member compositions by
applying a single monazite composition for all monazite and a single allanite composition produces
chemistry similar to britholite produced experimentally [34]. In essence, the observed reaction is the
reverse of those described in their experimental work [34], and interpreted to be a retrograde reaction.
The rims of the pseudomorph consist of a symplectite of fluorapatite + allanite, with no observable
monazite. This could be the result of Type II monazite and allanite reacting to produce an assemblage
of fluorapatite and allanite, or the result of initial compositional variability in the original britholite
crystal. The former is favored owing to geometric continuity of monazite into fluorapatite.
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These observations suggest that monazite described above formed as a result of a multi-step,
fluid-mediated, reaction history beginning with the assemblage of REE-rich fluorapatite and possibly,
britholite ultimately producing REE-poor fluoroapatite, allanite, and monazite. Britholite initially
reacted to form Type II monazite and allanite, which then locally reacted to an allanite + fluorapatite
assemblage along the rims. Fluorapatite reacted to Type I monazite, which then began to recrystallize
to an allanite + flourapatite assemblage, preserved in the core of Type I monazite. These reactions are
similar from those described [43], but without epidote (present in thin section but not immediately
involved in reactions). Similar to interpretations made in [43], the monazite-out reaction is limited
to the rims of britholite pseudomorphs, suggesting that these reactions likely document continued
retrogression. Timing constraints suggest that these reactions occurred long after ore formation
(1040–1020 Ma) [9,11] indicating that fluid–rock interaction may have been long-lived or episodic over
a long period of time (as much as 60 my). These constraints provide strong evidence that IOA deposits
of the Adirondack Mountains formed as the result of both magmatic and externally-derived fluids,
and that the latter, continued for tens of millions of years after crystallization and were responsible for
ore remobilization and recrystallization.

6.3. A Record of Evolving Fluid Conditions

Monazite-allanite-fluorapatite stability relationships have been investigated in a number of
experimental studies [6,7,29,30,36–43]. These studies indicate that pressure–temperature (P–T)
conditions are of minor importance to phase stability, particularly in the presence of fluids, where fluid
composition is the fundamental control on stable assemblages [29,36]. Therefore, the observed textural
evolution, and specifically the transient phase of monazite stability, was likely a result of variations in
fluid composition over time.

Based on the geochronologic data, both Type I and Type II monazite formed at approximately the
same time, but at the expense of different parent minerals (fluorapatite and britholite, respectively).
Both Type I and Type II monazite preserve later assemblages that indicate fluorapatite and allanite
formed at the expense of monazite +/− allanite. Therefore, monazite became stable, and over the
course of tens of millions of years, became unstable again. Based on experimental work presented
in [29,37], it seems likely that minor variations in metasomatic fluid-composition could explain these
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reactions. Na-dominated fluids may have originally promoted the formation of monazite at the
expense of fluorapatite and britholite. Following this, an increase in Ca concentration of the fluid
stabilized allanite and fluorapatite, and promoted the consumption of monazite, and are similar to
reactions described in [43].

Monazite crystals within and adjacent to ore samples from the historic Cheever Mine in the eastern
Adirondack Highlands preserve evidence for varying degrees of fluid-mediated recrystallization
well below the closure temperature for Th and Pb diffusion in monazite [44,45]. Experimental work
presented in [39], and major and trace element microanalysis presented in [3], show that fluid-mediated
dissolution–reprecipitation of monazite can occur at modest temperatures (450 ◦C), and essentially
“purifies” the crystal, including efficient removal of radiogenic Pb, thus resetting the apparent age.
Altered domains contain less Ca + Si and total actinides compared to unaltered domains. Ca + Si
plotted against U + Th from the experimental work form a line with a slope near 5.6 (Figure 5b).
Results plotted from this study show a wider spread in compositions, but along a line of similar
slope (slope of 4.7), which includes Type I and II monazite compositions. The relationship results
from the dependence that huttonite and cheralite components have on the ThO2 content of the
monazite, and is consistent with compositional data from experiments on monazite susceptibility to
fluid-mediated dissolution–reprecipitation.

These results provide further evidence, from a natural occurrence, that fluid-related
recrystallization of monazite, well below the closure temperature for Th and Pb diffusion,
trends towards end-member Ce-La monazite. This conclusion confirms similar assertions determined
from experimental work [3,4,36–39,42] and from natural examples presented in [36,40–42,46,47].
Furthermore, the data demonstrate that substitution of cheralite and huttonite components are the
primary mechanisms for incorporating ThO2 into monazite [1], and that higher grade crystals may be
more radiogenic due to higher concentrations of these solid-solution components. This is also consistent
with low actinide, and low cheralite and huttonite components reported from diagenetic monazite
in the Cambrian Potsdam Sandstone in New York, USA [48]. These data further demonstrate that
REEs and monazite are mobile under modest temperatures and appropriate fluid compositions [38].
It follows that the interpretation of monazite geochronology needs to be coupled with a systematic
understanding of compositional variability, phase associations, and recrystallization processes within
each petrologic system to better recognize and identify monazite affected by fluid-mediated reactions.
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