26 research outputs found

    Truncated Enterohemorrhagic \u3ci\u3eEscherichia coli\u3c/i\u3e (EHEC) O157:H7 Intimin (EaeA) Fusion Proteins Promote Adherence of EHEC Strains to HEp-2 Cells

    Get PDF
    Intimin, the product of the eaeA gene in enterohemorrhagic Escherichia coli O157:H7 (EHEC), is required for intimate adherence of these organisms to tissue culture cells and formation of the attaching and effacing lesion in the gnotobiotic pig. Because of the importance of intimin in the pathogenesis of EHEC O157:H7 infection in this animal model, we began a structure-function analysis of EaeA. For this purpose, we constructed amino-terminal fusions of the intimin protein with six histidine residues to form two independent fusions. The longer fusion, RIHisEae, contained 900 of the 935 predicted amino acids and included all but the extreme amino terminus. The second fusion, RVHdHisEae, consisted of the carboxyl two-thirds of the protein. Purified extracts of either construct enhanced binding of wild-type 86-24 to HEp-2 cells and conferred HEp-2 cell adherence on 86-24eaeΔ10, an eaeA deletion mutant, and B2F1, an EHEC O91:H21 eaeA mutant strain. When 86-24eaeΔ10 was transformed with either of the plasmids encoding the intimin fusion proteins, the transformant behaved like the wild-type parent strain and displayed localized adherence to HEp-2 cells, with positive fluorescent-actin staining. In addition, polyclonal antisera raised against RIHisEae reacted with both fusion constructs and recognized an outer membrane protein of the same mass as intimin (97 kDa) in EHEC and enteropathogenic E. coli but not E. coli K-12. The intimin-specific antisera also blocked adherence of EHEC to HEp-2 cells. Thus, intimin (i) is a 97-kDa outer membrane protein in EHEC that serves as a requisite adhesin for attachment of the bacteria to epithelial cells, even when the protein is truncated by one-third at its amino terminus and (ii) can be added exogenously to specifically facilitate HEp-2 cell adherence of EHEC but not E. coli K-12

    Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals

    Get PDF
    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals

    Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum Disorders

    Get PDF
    <div><h3>Background</h3><p>It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.</p> <h3>Methodology/Principal Findings</h3><p>In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ<sub>17–40/42</sub> in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ<sub>1–40/42</sub> detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques.</p> <h3>Conclusions/Significance</h3><p>The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.</p> </div

    Investigation of Enterohemorrhagic \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Adherence Characteristics and Invasion Potential Reveals a New Attachment Pattern Shared by Intestinal \u3ci\u3eE. coli\u3c/i\u3e

    Get PDF
    In this study, the interactions of enterohemorrhagic Escherichia coli (EHEC) O157 strains with human ileocecal (HCT-8) epithelial cells and HEp-2 cells were examined. EHEC adhered to, but did not invade, HCT-8 cells by the localized adherence mechanism and a heretofore unrecognized pattern which we called log jam. The log jam formation was (i) not observed on HEp-2 cells, (ii) independent of the EHEC eaeA gene required for localized adherence, and (iii) shared by pathogenic and nonpathogenic E. coli strains but not K-12 strains. The log jam phenotype may represent a basal means by which E. coli bacteria attach to the human intestine

    Molecular Typing in Bacterial Infections

    No full text
    XII, 482 p. 40 illus., 10 illus. in color.online

    Enterohemorrhagic\u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Requires Intimin To Colonize the Gnotobiotic Pig Intestine and To Adhere to HEp-2 Cells

    Get PDF
    In a previous study, enterohemorrhagic Escherichia coli (EHEC) O157:H7 with a deletion and insertion in the eaeA gene encoding intimin was used to establish that intimin is required for the organism to attach to and efface microvilli in the piglet intestine (M. S. Donnenberg, S. Tzipori, M. L. McKee, A. D. O’Brien, J. Alroy, and J. B. Kaper, J. Clin. Invest. 92:1418–1424, 1993). However, in the same investigation, a role for intimin in EHEC adherence to HEp-2 cells could not be definitively demonstrated. To analyze the basis for this discrepancy, we constructed an in-frame deletion of eaeA and compared the adherence capacity of this mutant with that of the wild-type strain in vitro and in vivo. We observed a direct correlation between the requisite for intimin in EHEC O157:H7 colonization of the gnotobiotic piglet intestine and adherence of the bacterium to HEp-2 cells. The in vitro-in vivo correlation lends credence to the use of the HEp-2 cell adherence model for further study of the intimin protein
    corecore