9 research outputs found

    Extracellular vesicles of the liver fluke Opisthorchis felineus stimulate the angiogenesis of human umbilical vein endothelial cells

    No full text
    The liver fluke Opisthorchis felineus is a clinically important food-borne parasite of humans. Infection with O. felineus in mammals is associated with liver morbidities such as periductal fibrosis, bile duct neoplasia, and chronic inflammation. Previously we have shown that excretory-secretory products (ESP) can stimulate the healing of skin wounds in mice, which may be due to stimulated angiogenesis and extracellular matrix remodeling. However, there are no studies analyzing the angiogenic character of O. felineus, and its effects on angiogenesis, vascularity, and vascular endothelium. The aim of this study was to evaluate the capacity of ESP and extracellular vesicles (EVs) of O. felineus to stimulate angiogenesis and the formation of pseudo-capillaries in vitro. We also aimed at the assessment of the angiogenesis during the infection in vivo, and estimation of the endothelial cell type abundances from heterogeneous bulk liver transcriptome between uninfected and infected animals with single-cell information. The study revealed significant alterations in vascularity in the hamster liver and significant involvement of portal endothelial cells at the transcriptome level. We also demonstrated that the ESP and EVs of O. felineus have the capacity to stimulate the formation of pseudo-capillaries in vitro. Both ESP and EVs appeared to have similar effects on all four parameters, increasing node formation and total master segments length, and significantly decreasing total isolated branches length and number of isolated segments of pseudo-capillaries. The liver flukes manipulate the hostʼs angiogenic response, a fact that has been related to the pathogenesis caused by these parasites. Understanding these pathogenic mechanisms may uncover new therapeutic targets to relieve or prevent the most severe complications of opisthorchiasis

    Identification of novel natural inhibitors of <i>Opisthorchis felineus</i> cytochrome P450 using structure-based screening and molecular dynamic simulation

    No full text
    <p><i>Opisthorchis felineus</i> is the etiological agent of opisthorchiasis in humans. <i>O. felineus</i> cytochrome P450 (OfCYP450) is an important enzyme in the parasite xenobiotic metabolism. To identify the potential anti-opisthorchid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (<i>n</i> = 1,65,869) against the OfCYP450. The ligands were screened against OfCYP450 in four sequential docking modes that resulted in 361 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 10 compounds were found to fit well with re-docking studies. After refinement by docking and drug-likeness analyses, four potential inhibitors (ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789) were identified. These ligands with reference compounds (itraconazole and fluconazole) were further subjected to molecular dynamics simulation (MDS) and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the OfCYP450 and bound complexes. The binding energy analyses were also calculated. The results suggested that the compounds had a negative binding energy with −259.41, −110.09, −188.25, −163.30, −202.10, and −158.79 kJ mol<sup>−1</sup> for itraconazole, fluconazole, and compounds with IDs ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789, respectively. These lead compounds displayed significant pharmacological and structural properties to be drug candidates. On the basis of MDS results and binding energy analyses, we concluded that ZINC8790946, ZINC70707116, and ZINC85878789 have excellent potential to inhibit OfCYP450.</p

    Consortium high level timelines/activities.

    No full text
    <p>1. Siberian State Medical University, Tomsk, Russian Federation, 2. Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands, 3. Department of Parasitology and Leiden Parasite Immunology Group, Leiden University Medical Center, Leiden, the Netherlands, 4. George Washington University Medical Center, United States, 5. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 6. Institute of Tropical Medicine, University of Tübingen, Germany, 7. Khon Kaen University, Khon Kaen, Thailand, 8. Pfizer LLC, Moscow, Russian Federation, 9. ReMedys Foundation, Geneva, Switzerland, 10. Royal Brompton Hospital, United Kingdom; Research Institute for Medical Genetics, Tomsk, Russian Federation, 11. Swiss Tropical and Public Health Institute, Basel, Switzerland.</p
    corecore