13 research outputs found
Marine energy exploitation in the mediterranean region: steps forward and challenges
This works aims to describe current perspectives for marine energy exploitation in the Mediterranean basin, highlighting challenges and opportunities as well as the factors that still limit its market deployment. Technologies for the conversion of Marine Energy (ME) into electricity are now ready for full-scale deployment in farms of devices, making the final step from demonstration to operability and commercial exploitation. Although marine energy is more abundant along the Atlantic and Nordic European coasts, significant resources are also available in the Mediterranean Sea, opening up new perspectives for sustainable energy production in sensitive coastal areas and for the economic development of Southern Europe. The implementation of ME converters in the Mediterranean is in fact liable to induce significant technological advancements leading to product innovation, due to the local low energy levels which impose more restrictive constraints on device efficiency and environmental compatibility. In addition, the milder climate allows the testing of concepts and prototypes in the natural environment at more affordable costs, lowering capital risks for new and innovative small and medium enterprises. Research institutions and industrial players in Mediterranean countries have already taken up the challenge, despite the numerous limiting factors that still need to be removed. In particular, the ME sector adds up to the many different traditional maritime activities and to the new ocean-related industries that are developing, potentially exacerbating the competition for the use of marine space in the Mediterranean region and threatening its environmental status. The ME sector needs therefore to design suitable instruments to involve all the relevant stakeholders in a participative public debate as to how to best manage the maritime space. As the prospective sea use patterns are rapidly changing, an adequate international legal and policy framework needs to be designed for the coherent management of sea space, and Marine Spatial Planning needs to be finally implemented by EU Member States also in the Mediterranean area. To this end, the creation of transnational clusters of stakeholders is expected be an effective catalyzer, especially as they can foster the exchange of knowledge and best practices both across European countries and between the North and the South shore of the Mediterranean basin
1674 JOURNAL OF CLIMATE VOLUME 15 The Hydrological Cycle in the Mediterranean Region and Implications for the Water Budget of the Mediterranean Sea
The hydrological cycle in the Mediterranean region is analyzed focusing on climatology and interannual to interdecadal variability, in particular long-term changes related to the well-established North Atlantic Oscillation (NAO) teleconnection. Recent atmospheric reanalyses and observational datasets are used: precipitation, evaporation, and moisture flux from 50 yr of NCEP’s and 15 yr of ECMWF’s reanalyses; precipitation from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the East Anglia University Climate Research Unit (CRU) datasets; and evaporation from the University of Wisconsin—Milwaukee (UWM) Comprehensive Ocean–Atmosphere Data Set (COADS). A budget analysis is performed to study contributions to the freshwater flux into the Mediterranean Sea, including atmospheric as well as river discharge inputs. The total river discharge is derived using historical time series from Mediterranean Hydrological Cycle Observing System (MED-HYCOS) and Global Runoff Data Center (GRDC) archives. Mediterranean-averaged precipitation during the period 1979–93 has an annual mean ranging among datasets from 331 to 477 mm yr�1, with a seasonal cycle amplitude of �700 mm yr�1. Evaporation is estimated in the range of 934–1176 mm yr�1 with a seasonal cycle amplitude of �1000 mm yr�1. The excess of evaporation over precipitation gives an annual mean Mediterranean Sea water loss ranging among datasets approximatel
Hydrographic vs. Dynamic Description of a Basin: The Example of Baroclinic Motion in the Ionian Sea
The Ionian Sea is a crucial intersection for various water masses in the Mediterranean. Its hydrography and dynamics play a significant role in the seawater budgets and biogeochemistry of the neighboring sub-basins. Multiple theories have been formulated to gain a better understanding of the Ionian dynamics. These theories primarily attribute the variability of the near-surface Ionian circulation to internal processes. Here, we utilize horizontal currents and temperature–salinity profiles from the Copernicus reanalysis to examine the contribution of baroclinic modes to the variability of the basin horizontal circulation. Our findings demonstrate that, although the basin vertical structure is characterized by three layers, the primary patterns of the Ionian circulation can be attributed to the first baroclinic mode. This mode, along with the barotropic mode, accounts for over 85% of the overall variability in the Ionian circulation, suggesting that only one of the three interfaces separating the different water masses in the basin is dynamically active. We estimate the depth of this interface to be about 490 m. Additionally, our analysis shows that more than 90% of the kinetic energy over the water column is localized above this interface, indicating that the deep layer of the Ionian is dynamically nearly inert
Satellite Multi/Hyper Spectral HR Sensors for Mapping the <i>Posidonia oceanica</i> in South Mediterranean Islands
The Mediterranean basin is a hot spot of climate change where the Posidonia oceanica (L.) Delile (PO) and other seagrasses are under stress due to its effect on marine coastal habitats and the rising influence of anthropogenic activities (i.e., tourism, fishery). The PO and seabed ecosystems, in the coastal environments of Pantelleria and Lampedusa, suffer additional growing impacts from tourism in synergy with specific stress factors due to increasing vessel traffic for supplying potable water and fossil fuels for electrical power generation. Earth Observation (EO) data, provided by high resolution (HR) multi/hyperspectral operative satellite sensors of the last generation (i.e., Sentinel 2 MSI and PRISMA) have been successfully tested, using innovative calibration and sea truth collecting methods, for monitoring and mapping of PO meadows under stress, in the coastal waters of these islands, located in the Sicily Channel, to better support the sustainable management of these vulnerable ecosystems. The area of interest in Pantelleria was where the first prototype of the Italian Inertial Sea Wave Energy Converter (ISWEC) for renewable energy production was installed in 2015, and sea truth campaigns on the PO meadows were conducted. The PO of Lampedusa coastal areas, impacted by ship traffic linked to the previous factors and tropicalization effects of Italy’s southernmost climate change transitional zone, was mapped through a multi/hyper spectral EO-based approach, using training/testing data provided by side scan sonar data, previously acquired. Some advanced machine learning algorithms (MLA) were successfully evaluated with different supervised regression/classification models to map seabed and PO meadow classes and related Leaf Area Index (LAI) distributions in the areas of interest, using multi/hyperspectral data atmospherically corrected via different advanced approaches
An Atmosphere-Ocean Regional Climate Model for the Mediterranean area: Assessment of a Present Climate Simulation. Climate Dynamics doi:10.1007/s00382-009-0691-8
International audienceWe present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model's skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models