64 research outputs found

    Enzymatically Assisted CO<sub>2</sub> Removal from Flue-Gas

    Get PDF
    AbstractThe enzyme carbonic anhydrase is an enzyme known to enhance CO2 absorption rates. However, for economic viability in enzyme based absorption technology long term stability under process relevant conditions is needed. Thus, here enzyme stability for extended times are investigated with respect to pH, temperature and solvent. Temperatures and pH stability were tested for up to 100hours incubation and the enzyme was temperature stable up to 60°C and in the pH range from 7 to 11, with some residual activity between pH 5 and 12. Furthermore, enzyme stability was tested for 7 different capture solvents for 150 days, at 1M or 3M solvent concentrations, 40°C and pH between 8-9 and 10. Residual activity was found with all samples ranging from 12 to 91% of the initial activity. This study show that this enzyme can indeed be used for extended periods in process relevant conditions, and thus shows promise for industrial implementation as a catalyst in carbon capture

    Reaction equilibrium of the ω-transamination of (S)-Phenylethylamine: experiments and ePC-SAFT modeling

    Get PDF
    This work focuses on the thermodynamic equilibrium of the ω-transaminase-catalyzed reaction of (S)-phenylethylamine with cyclohexanone to acetophenone and cyclohexylamine in aqueous solution. For this purpose, the equilibrium concentrations of the reaction were experimentally investigated under varying reaction conditions. It was observed that the temperature (30 and 37 °C), the pH (between pH 7 and pH 9), as well as the initial reactant concentrations (between 5 and 50 mmol·kg-1) influenced the equilibrium position of the reaction. The position of the reaction equilibrium was moderately shifted toward the product side by either decreasing temperature or decreasing pH. In contrast, the initial ratio of the reactants showed only a marginal influence on the equilibrium position. Further experiments showed that increasing the initial reactant concentrations significantly shifted the equilibrium position to the reactant side. In order to explain these effects, the activity coefficients of the reacting agents were calculated and the activity-based thermodynamic equilibrium constant Kth of the reaction was determined. For this purpose, the activity coefficients of the reacting agents were modeled at their respective experimental equilibrium concentrations using the equation of state electrolyte PC-SAFT (ePC-SAFT). The combination of the concentrations of the reacting agents at equilibrium and their respective activity coefficients provided the thermodynamically consistent equilibrium constant Kth. Unexpectedly, the experimental Km values deviated by a factor of up to four from the thermodynamic equilibrium constant Kth. The observed concentration dependency of the experimental Km values could be explained by the influence of concentration on activity coefficients. Further, these activity coefficients were found to be strongly temperature dependent, which is important for the determination of standard enthalpy of reactions, which in this work was found to be +7.7 ± 2.8 kJ·mol-1. Using the so-determined Kth and activity coefficients of the reacting agents (ePC-SAFT), the equilibrium concentrations of the reaction were predicted for varying initial reactant concentrations, which were found to be in good agreement with the experimental behavior. These results showed a non-negligible influence of the activity coefficients of the reacting agents on the equilibrium position and, thus, on the product yield. Experiments and ePC-SAFT predictions showed that the equilibrium position can only be described accurately by taking activity coefficients into account

    Ischemic preconditioning improves maximal performance in humans

    Get PDF
    Repeated episodes of ischemia followed by reperfusion, commonly referred to as ischemic preconditioning (IPC), represent an endogenous protective mechanism that delays cell injury. IPC also increases blood flow and improves endothelial function. We hypothesize that IPC will improve physical exercise performance and maximal oxygen consumption. The purpose of the study was to examine the effect of ischemic preconditioning in leg skeletal muscles on cycling exercise performance in healthy individuals. Fifteen healthy, well-trained subjects performed two incremental maximal exercise tests on a bicycle ergometer. Power output, oxygen consumption, ventilation, respiratory quotient, and heart rate were measured continuously. Blood pressure and blood lactate were measured before and after the test. One exercise test was performed after the application of ischemic preconditioning, using a protocol of three series of 5-min ischemia at both legs with resting periods of 5 min in between. The other maximal cycling test served as a control. Tests were conducted in counterbalanced order, at least 1 week apart, at the same time of the day. The repeated ischemic periods significantly increased maximal oxygen consumption from 56.8 to 58.4 ml/min per kg (P = 0.003). Maximal power output increased significantly from 366 to 372 W (P = 0.05). Ischemic preconditioning had no effect on ventilation, respiratory quotient, maximal heart rate, blood pressure or on blood lactate. Repeated short-term leg ischemia prior to an incremental bicycle exercise test improves maximal oxygen consumption by 3% and power output by 1.6%. This protocol, which is suggested to mimic the effects of ischemic preconditioning, may have important implications for exercise performance
    • …
    corecore