23 research outputs found

    HIV-1 tat addresses dendritic cells to induce a predominant th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection

    Get PDF
    Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (∼20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and β-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-αgene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-α production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host. Copyright © 2009 by The American Association of Immunologists, Inc

    Original Article

    Get PDF
    The pancreas taken from the frog (Rana nigromaculata) was fixed in 1% OsO_4 and sliced into ultrathin sections for electron microscopic studies. The following observations were made: 1. A great \u27number of minute granules found in the cytoplasm of a pancreatic cell were called the microsomes, which were divided into two types, the C-microsome and S-microsome. 2. Electron microsopic studies of the ergastoplasm showed that it is composed of the microsome granules and A-substance. The microsomes were seen embedded in the A-substance which was either filamentous or membranous. The membranous structure, which was called the Am-membrane, was seen to form a sac, with a cavity of varying sizes, or to form a lamella. 3. The Am-membrane has close similarity to α-cytomembrane of Sjostrand, except that the latter is rough-surfaced. It was deduced that the Am-membrane, which is smooth-surfaced, might turn into the rough-surfaced α-cytomembrane. 4. There was the Golgi apparatus in the supranuclear region of a pancreatic cell. It consisted of the Golgi membrane, Golgi vacuole and. Golgi vesicle. 5. The mitochondria of a pancreatic cell appeared like long filaments, and some of them were seen to ramify. 6. The membrane of mitochondria, i. e. the limiting membrane, consisted of the Ammembrane. The mitochondria contained a lot of A-substances, as well as the C-microsomes and S-microsomes. When the mitochondria came into being, there appeared inside them chains of granules, which appeared like strips of beads, as the outgrowths of the A-substance and the microsome granules attached to the Am-membrane. They are the so-called cristae mitochondriales. 7. The secretory granules originate in the microsomes. They came into being when the microsomes gradually thickened and grew in size as various substances became adhered to them. Some of the secretory granules were covered with a membrane and appeared like what they have called the intracisternal granule of Palade.It seemed that this was a phenomenon attendant upon the dissolution and liqutefaction of the secretory granule. 8. Comparative studies were made of the ergastoplasm of the pancreatic cells from the frogs in hibernation, the frogs artificially hungered, the frogs which were given food after a certain period of fasting, the frogs to which pilocarpine was given subcutaneously, and the very young, immature frogs. The studies revealed that the ergastoplasm of the pancreatic cells greatly varied in form with the difference in nutritive condition and with different developmental stages of the cell. The change in form and structure occured as a result of transformation of the microsomes and A-substance. The ergastoplasm, even after it has come into being, might easily be inactivated if nutrition is defective. The ergastoplasm is concerned in the secretory mechanism, which is different from the secretory phenomenon of the secretory granules. It would seem that structurally the mitochondria have no direct relation to this mechanism

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial

    Full text link

    HIV-1 Tat-based vaccines: from basic science to clinical trials

    No full text
    Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF
    The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 μg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks. Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4(+) T-cell number ≥200 cells/μL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease

    HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies

    No full text
    none44Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions. © 2012 Monini et al.openMonini P.; Cafaro A.; Srivastava I.; Moretti S.; Sharma V.; Andreini C.; Chiozzini C.; Ferrantelli F.; Pavone Cossut M.; Tripiciano A.; Nappi F.; Longo O; Bellino S.; Picconi O.; Fanales-Belasio E.;Borsetti A.; Toschi E.; Schiavoni I.; Bacigalupo I.; Kan E.; Sernicola L.; Maggiorella M.; Montin K.;Porcu M.; Leone P.; Leone P; Collacchi B.; Palladino C.; Ridolfi B.; Falchi M.; Macchia I.; UlmerJ.B.; Butto` S.; Sgadari C.; Magnani M.; Federico M.; Titti F.; Banci L.; Dallocchio F.; Rappuoli R.; Ensoli F.; Barnett S.W.; Garaci E.; Ensoli B.Monini, P.; Cafaro, A.; Srivastava, I.; Moretti, S.; Sharma, V.; Andreini, C.; Chiozzini, C.; Ferrantelli, F.; Pavone Cossut, M.; Tripiciano, A.; Nappi, F.; Longo, O; Bellino, S.; Picconi, O.; Fanales Belasio, E.; Borsetti, A.; Toschi, E.; Schiavoni, I.; Bacigalupo, I.; Kan, E.; Sernicola, L.; Maggiorella, M.; Montin, Katy; Porcu, M.; Leone, P.; Leone, P; Collacchi, B.; Palladino, C.; Ridolfi, B.; Falchi, M.; Macchia, I.; U. l. m. e. r. J., B.; Butto`, S.; Sgadari, C.; Magnani, M.; Federico, M.; Titti, F.; Banci, L.; Dallocchio, Franco Pasquale Filippo; Rappuoli, R.; Ensoli, F.; Barnett, S. W.; Garaci, E.; Ensoli, Barbar
    corecore