3,295 research outputs found

    GEM-CEDAR Study of Ionospheric Energy Input and Joule Dissipation

    Get PDF
    We are studying ionospheric model performance for six events selected for the GEM-CEDAR modeling challenge. DMSP measurements of electric and magnetic fields are converted into Poynting Flux values that estimate the energy input into the ionosphere. Models generate rates of ionospheric Joule dissipation that are compared to the energy influx. Models include the ionosphere models CTIPe and Weimer and the ionospheric electrodynamic outputs of global magnetosphere models SWMF, LFM, and OpenGGCM. This study evaluates the model performance in terms of overall balance between energy influx and dissipation and tests the assumption that Joule dissipation occurs locally where electromagnetic energy flux enters the ionosphere. We present results in terms of skill scores now commonly used in metrics and validation studies and we can measure the agreement in terms of temporal and spatial distribution of dissipation (i.e, location of auroral activity) along passes of the DMSP satellite with the passes' proximity to the magnetic pole and solar wind activity level

    Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    Get PDF
    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED

    Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center

    Get PDF
    In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user

    Near-Real Time Data for Space Weather Analyses: Present Status and Future

    Get PDF
    Assessments of the present state and future evolution of the space environment heavily relies on timely access to appropriate environmental measurements. These, near real-time (nrt), measurements provide a direct assessment of local or remote space environment conditions, they contribute to a more global description of Space Weather parameters through assimilative models, and they provide essential input into forecasting models. Unlike meteorology, however, the provision of these data is not a mainstream activity in the sense that critical space environment data are often derived from research rather than operational sensors. In addition, space research is a relatively immature field, where SUbstantial gaps in our knowledge impede our ability to optimally use available data streams. In this presentation, we provide examples of presently employed nrt data streams and their utility. We further discuss challenges and opportunities associated with the present approach to space weather forecasting. Finally, an outlook toward the future will be presented

    Transitioning Models and Model Output to Space Weather Operations: Challenges and Opportunities

    Get PDF
    The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center

    Near Real Time Tools for ISS Plasma Science and Engineering Applications

    Get PDF
    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating

    The activity approach as a part of a socializing process in adaptive sports activities

    Get PDF
    The study and development of the socialization process is a topical problem for science and practice nowadays. The authors present in the article the analysis results of the activity approach as a part of the socializing process in adaptive sports activities. The material is addressed to the factors of social upbringing and the implementation of the goals and objectives of socialization in adaptive sports activities. The paper also contains the study results of socialization of schoolchildren with limited abilities in adaptive sports activities. In addition, the possibilities of sports and the negative impact of sports models on the socialization of children with limited abilities have been analysed in this paper. An integrated model of adaptive-sports extracurricular activities for students with limited abilities, its organization technology has been presented. As a result of the study, it has been proved that adaptive sports activities as an area of self-expression, manifestation and formation of certain abilities, gifts and talent, is an important part of socialization of the student which helps prepare students with limited abilities for life
    • …
    corecore