13 research outputs found

    Registration of 3D fetal neurosonography and MRI.

    Get PDF
    We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image

    Resting State fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction

    Get PDF
    There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or at least small, are not suitable. Previous published studies have tackled this problem by adopting conventional methods and discarding as much as 40% or more of the acquired data. In this work, we developed and tested a processing framework for fetal Resting State fMRI, capable of correcting gross motion. The method comprises bias field and spin history corrections in the scanner frame of reference, Combined with slice to volume registration and scattered data interpolation to place all data into a consistent anatomical space. The aim is to recover an ordered set of samples suitable for further analysis using standard tools such as Group Independent Component Analysis (Group ICA). We have tested the approach using simulations and in vivo data acquired at 1.5 T. After full motion correction, Group ICA performed on a population of 8 fetuses extracted 20 networks, 6 of which were identified as matching those previously observed in preterm babies

    Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood.

    Get PDF
    Autism spectrum disorder (ASD) is a common neurodevelopmental condition, and infant siblings of children with ASD are at a higher risk of developing autistic traits or an ASD diagnosis, when compared to those with typically developing siblings. Reports of differences in brain anatomy and function in high-risk infants which predict later autistic behaviors are emerging, but although cerebellar and subcortical brain regions have been frequently implicated in ASD, no high-risk study has examined these regions. Therefore, in this study, we compared regional MRI volumes across the whole brain in 4-6-month-old infants with (high-risk, n = 24) and without (low-risk, n = 26) a sibling with ASD. Within the high-risk group, we also examined whether any regional differences observed were associated with autistic behaviors at 36 months. We found that high-risk infants had significantly larger cerebellar and subcortical volumes at 4-6-months of age, relative to low-risk infants; and that larger volumes in high-risk infants were linked to more repetitive behaviors at 36 months. Our preliminary observations require replication in longitudinal studies of larger samples. If correct, they suggest that the early subcortex and cerebellum volumes may be predictive biomarkers for childhood repetitive behaviors. Autism Res 2019, 12: 614-627. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: Individuals with a family history of autism spectrum disorder (ASD) are at risk of ASD and related developmental difficulties. This study revealed that 4-6-month-old infants at high-risk of ASD have larger cerebellum and subcortical volumes than low-risk infants, and that larger volumes in high-risk infants are associated with more repetitive behaviors in childhood

    Dynamic field mapping and motion correction using interleaved double spin-echo diffusion MRI

    Get PDF
    Diffusion MRI (dMRI) analysis requires combining data from many images and this generally requires corrections for image distortion and for subject motion during what may be a prolonged acquisition. Particularly in non-brain applications, changes in pose such as respiration can cause image distortion to be time varying, impeding static field map-based correction. In addition, motion and distortion correction is challenging at high b-values due to the low signal-to-noise ratio (SNR). In this work we develop a new approach that breaks the traditional “one-volume, one-weighting” paradigm by interleaving low-b and high-b slices, and combine this with a reverse phase-encoded double-spin echo sequence. Interspersing low and high b-value slices ensures that the low-b, high-SNR data is in close spatial and temporal proximity to support dynamic field map estimation from the double spin-echo acquisition and image-based motion correction. This information is propagated to high-b slices with interpolation across space and time. The method is tested in the challenging environment of fetal dMRI and it is demonstrated using data from 8 pregnant volunteers that combining dynamic distortion correction with slice-by-slice motion correction increases data consistency to facilitate advanced analyses where conventional methods fail

    Towards 3D registration of fetal brain MRI and ultrasound

    No full text
    corecore