99 research outputs found

    Computational deconvolution to estimate cell type-specific gene expression from bulk data

    Get PDF
    Computational deconvolution is a time and cost-efficient approach to obtain cell type-specific information from bulk gene expression of heterogeneous tissues like blood. Deconvolution can aim to either estimate cell type proportions or abundances in samples, or estimate how strongly each present cell type expresses different genes, or both tasks simultaneously. Among the two separate goals, the estimation of cell type proportions/abundances is widely studied, but less attention has been paid on defining the cell type-specific expression profiles. Here, we address this gap by introducing a novel method Rodeo and empirically evaluating it and the other available tools from multiple perspectives utilizing diverse datasets.</p

    Estimating cell type-specific differential expression using deconvolution

    Get PDF
    When differentially expressed genes are detected from samples containing different types of cells, only a very coarse overview without any cell type-specific information is obtained. Although several computational methods have been published to estimate cell type-specific differentially expressed genes from bulk samples, their performance has not been evaluated outside the original publications. Here, we compare accuracies of nine of these methods, test their sensitivity to various factors often present in real studies and provide practical guidelines for end users about when reliable results can be expected and when not. Our results show that TOAST, CARseq, CellDMC and TCA are accurate methods with their own strengths and weaknesses. Notably, methods designed to detect cell type-specific differential methylation were comparable to those designed for gene expression, and both types outperformed methods originally designed for other tasks. The most important factors affecting the accuracy of the estimated cell type-specific differentially expressed genes are (i) abundance of the cell type (rare cell types are harder to analyze) and (ii) individual heterogeneity in the cell type-specific expression profiles (stable cell types are easier to analyze)</p

    Comparison of methods to detect differentially expressed genes between single-cell populations

    Get PDF
    We compared five statistical methods to detect differentially expressed genes between two distinct single-cell populations. Currently, it remains unclear whether differential expression methods developed originally for conventional bulk RNA-seq data can also be applied to single-cell RNA-seq data analysis. Our results in three diverse comparison settings showed marked differences between the different methods in terms of the number of detections as well as their sensitivity and specificity. They, however, did not reveal systematic benefits of the currently available single-cell-specific methods. Instead, our previously introduced reproducibility-optimization method showed good performance in all comparison settings without any single-cell-specific modifications.</p

    PASI: A novel pathway method to identify delicate group effects

    Get PDF
    Pathway analysis is a common approach in diverse biomedical studies, yet the currently-available pathway tools do not typically support the increasingly popular personalized analyses. Another weakness of the currently-available pathway methods is their inability to handle challenging data with only modest group-based effects compared to natural individual variation. In an effort to address these issues, this study presents a novel pathway method PASI (Pathway Analysis for Sample-level Information) and demonstrates its performance on complex diseases with different levels of group-based differences in gene expression. PASI is freely available as an R package

    ROTS: An R package for reproducibility-optimized statistical testing

    Get PDF
    Differential expression analysis is one of the most common types of analyses performed on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process that detects features, such as genes or proteins, showing statistically significant differences between the sample groups under comparison. A major challenge in the analysis is the choice of an appropriate test statistic, as different statistics have been shown to perform well in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties of the data and provides a ranking of the features based on their statistical evidence for differential expression between two groups. ROTS has already been successfully applied in a range of different studies from transcriptomics to proteomics, showing competitive performance against other state-of-the-art methods. To promote its widespread use, we introduce here a Bioconductor R package for performing ROTS analysis conveniently on different types of omics data. To illustrate the benefits of ROTS in various applications, we present three case studies, involving proteomics and RNA-seq data from public repositories, including both bulk and single cell data. The package is freely available from Bioconductor (https://www.bioconductor.org/packages/ROTS)

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    Aims/hypothesis Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Methods Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals. Results Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed. Conclusions/interpretation We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.Peer reviewe

    Bexmarilimab-induced macrophage activation leads to treatment benefit in solid tumors:The phase I/II first-in-human MATINS trial

    Get PDF
    Macrophage Clever-1 contributes to impaired antigen presentation and suppression of anti-tumor immunity. This first-in-human trial investigates the safety and tolerability of Clever-1 blockade with bexmarilimab in patients with treatment-refractory solid tumors and assesses preliminary anti-tumor efficacy, pharmacodynamics, and immunologic correlates. Bexmarilimab shows no dose-limiting toxicities in part I (n = 30) and no additional safety signals in part II (n = 108). Disease control (DC) rates of 25%–40% are observed in cutaneous melanoma, gastric, hepatocellular, estrogen receptor-positive breast, and biliary tract cancers. DC associates with improved survival in a landmark analysis and correlates with high pre-treatment intratumoral Clever-1 positivity and increasing on-treatment serum interferon γ (IFNγ) levels. Spatial transcriptomics profiling of DC and non-DC tumors demonstrates bexmarilimab-induced macrophage activation and stimulation of IFNγ and T cell receptor signaling selectively in DC patients. These data suggest that bexmarilimab therapy is well tolerated and show that macrophage targeting can promote immune activation and tumor control in late-stage cancer

    All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: a multicountry two-stage time series analysis.

    Get PDF
    BACKGROUND Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. METHODS We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. FINDINGS Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. INTERPRETATION In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires. FUNDING Australian Research Council and the Australian National Health and Medical Research Council

    Enterovirus-associated changes in blood transcriptomic profiles of children with genetic susceptibility to type 1 diabetes

    Get PDF
    AIMS/HYPOTHESIS: Enterovirus infections have been associated with the development of type 1 diabetes in multiple studies, but little is known about enterovirus-induced responses in children at risk for developing type 1 diabetes. Our aim was to use genome-wide transcriptomics data to characterise enterovirus-associated changes in whole-blood samples from children with genetic susceptibility to type 1 diabetes.METHODS: Longitudinal whole-blood samples (356 samples in total) collected from 28 pairs of children at increased risk for developing type 1 diabetes were screened for the presence of enterovirus RNA. Seven of these samples were detected as enterovirus-positive, each of them collected from a different child, and transcriptomics data from these children were analysed to understand the individual-level responses associated with enterovirus infections. Transcript clusters with peaking or dropping expression at the time of enterovirus positivity were selected as the enterovirus-associated signals.RESULTS: Strong signs of activation of an interferon response were detected in four children at enterovirus positivity, while transcriptomic changes in the other three children indicated activation of adaptive immune responses. Additionally, a large proportion of the enterovirus-associated changes were specific to individuals. An enterovirus-induced signature was built using 339 genes peaking at enterovirus positivity in four of the children, and 77 of these genes were also upregulated in human peripheral blood mononuclear cells infected in vitro with different enteroviruses. These genes separated the four enterovirus-positive samples clearly from the remaining 352 blood samples analysed.CONCLUSIONS/INTERPRETATION: We have, for the first time, identified enterovirus-associated transcriptomic profiles in whole-blood samples from children with genetic susceptibility to type 1 diabetes. Our results provide a starting point for understanding the individual responses to enterovirus infections in blood and their potential connection to the development of type 1 diabetes.DATA AVAILABILITY: The datasets analysed during the current study are included in this published article and its supplementary information files ( www.btk.fi/research/computational-biomedicine/1234-2 ) or are available from the Gene Expression Omnibus (GEO) repository (accession GSE30211).</div
    corecore