82 research outputs found

    Characterization of IgG Antibody Response against SARS-CoV-2 (COVID-19) in the Cypriot Population

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has hit its second year and continues to damage lives and livelihoods across the globe. There continues to be a global effort to present serological data on SARS-CoV-2 antibodies in different individuals. As such, this study aimed to characterize the seroprevalence of SARS-CoV-2 antibodies in the Cypriot population for the first time since the pandemic started. Our results show that a majority of people infected with SARS-CoV-2 developed IgG antibodies against the virus, whether anti-NP, anti-S1RBD, or both, at least 20 days after their infection. Additionally, the percentage of people with at least one antibody against SARS-CoV-2 in the group of volunteers deemed SARS-CoV-2 negative via RT-PCR or who remain untested/undetermined (14.43%) is comparable to other reported percentages worldwide, ranging anywhere from 0.2% to 24%. We postulate that these percentages reflect the underreporting of true infections in the population, and also show the steady increase of herd immunity. Additionally, we showed a significantly marked decrease in anti-NP IgG antibodies in contrast to relatively stable levels of anti-S1RBD IgG antibodies in previously infected individuals across time

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s\sqrt{s} =13 TeV

    No full text
    International audienceA search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s\sqrt{s} =13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1^{-1}. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s\sqrt{s} =13 TeV

    No full text
    International audienceA search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s\sqrt{s} =13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1^{-1}. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s\sqrt{s} =13 TeV

    No full text
    International audienceA search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s\sqrt{s} =13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1^{-1}. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s= \sqrt{s} = 13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1 ^{-1} . Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time.A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at s\sqrt{s} =13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb1^{-1}. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Observation of the Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- decay and studies of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first observation of the decay Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- and measurement of the branching ratio of Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^- to Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^- are presented. The J/ψ\psi and ψ\psi(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at s\sqrt{s} = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb1^{-1}. The branching fraction ratio is measured to be B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\toψ\psi(2S)Ξ\Xi^-)/B\mathcal{B}(Ξb\Xi^-_\mathrm{b}\to J/ψ\psiΞ\Xi^-) = 0.840.19+0.21^{+0.21}_{-0.19} (stat) ±\pm 0.10 (syst) ±\pm 0.02 (B\mathcal{B}), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the Ξb0\Xi_\mathrm{b}^{\ast{}0} baryon mass and natural width are also presented, using the Ξbπ+\Xi_\mathrm{b}^-\pi^+ final state, where the Ξb\Xi^-_\mathrm{b} baryon is reconstructed through the decays J/ψΞ\psi \Xi^-, ψ\psi(2S)Ξ\Xi^-, J/ψΛ\psi \LambdaK^-, and J/ψΣ0\psi \Sigma^0K^-. Finally, the fraction of the Ξb\Xi^-_\mathrm{b} baryons produced from Ξb0\Xi_\mathrm{b}^{\ast{}0} decays is determined

    Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H \to aa \tobbˉbbˉ\mathrm{b\bar{b}b\bar{b}}. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 <\ltmam_\mathrm{a}<\lt 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp \to WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction B\mathcal{B}(H \to aa \to bbˉbbˉ\mathrm{b\bar{b}b\bar{b}}). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma=m_\mathrm{a} = 20 GeV to 0.36 for ma=m_\mathrm{a} = 60 GeV, complementing other measurements in the μμττ\mu\mu\tau\tau, ττττ\tau\tau\tau\tau and bb\ell\ell (=\ell= μ\mu,τ\tau) channels

    Observation of the J/ψ\psi \to μ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction
    corecore