75 research outputs found

    Effect of corneal light scatter on vision: a review of the literature

    Get PDF
    The cornea is the transparent connective tissue window at the front of the eye. The physiological role of the cornea is to conduct external light into the eye, focus it, together with the lens, onto the retina, and to provide rigidity to the entire eyeball. Therefore, good vision requires maintenance of the transparency and proper refractive shape of the cornea. The surface structures irregularities can be associated with wavefront aberrations and scattering errors. Light scattering in the human cornea causes a reduction of visual quality. In fact, the cornea must be transparent and maintain a smooth and stable curvature since it contributes to the major part of the focusing power of the eye. In most cases, a simple examination of visual acuity cannot demonstrate the reduction of visual quality secondary light scattering. In fact, clinical techniques for examining the human cornea in vivo have greatly expanded over the last few decades. The measurement of corneal back scattering qualifies the degree of corneal transparency. The measurement of corneal forward-scattering quantifies the amount of visual impairment that is produced by the alteration of transparency. The aim of this study was to review scattering in the human cornea and methods of measuring it

    Human Cancer Cell Radiation Response Investigated through Topological Analysis of 2D Cell Networks

    Get PDF
    Clonogenic assays are routinely used to evaluate the response of cancer cells to external radiation fields, assess their radioresistance and radiosensitivity, estimate the performance of radiotherapy. However, classic clonogenic tests focus on the number of colonies forming on a substrate upon exposure to ionizing radiation, and disregard other important characteristics of cells such their ability to generate structures with a certain shape. The radioresistance and radiosensitivity of cancer cells may depend less on the number of cells in a colony and more on the way cells interact to form complex networks. In this study, we have examined whether the topology of 2D cancer-cell graphs is influenced by ionizing radiation. We subjected different cancer cell lines, i.e. H4 epithelial neuroglioma cells, H460 lung cancer cells, PC3 bone metastasis of grade IV of prostate cancer and T24 urinary bladder cancer cells, cultured on planar surfaces, to increasing photon radiation levels up to 6 Gy. Fluorescence images of samples were then processed to determine the topological parameters of the cell-graphs developing over time. We found that the larger the dose, the less uniform the distribution of cells on the substrate—evidenced by high values of small-world coefficient (cc), high values of clustering coefficient (cc), and small values of characteristic path length (cpl). For all considered cell lines, >1 for doses higher or equal to 4 Gy, while the sensitivity to the dose varied for different cell lines: T24 cells seem more distinctly affected by the radiation, followed by the H4, H460 and PC3 cells. Results of the work reinforce the view that the characteristics of cancer cells and their response to radiotherapy can be determined by examining their collective behavior—encoded in a few topological parameters—as an alternative to classical clonogenic assays

    integration of enhanced optical tracking techniques and imaging in igrt

    Get PDF
    Patient setup/Optical tracking/IGRT/Treatment surveillance. In external beam radiotherapy, modern technologies for dynamic dose delivery and beam conformation provide high selectivity in radiation dose administration to the pathological volume. A comparable accuracy level is needed in the 3-D localization of tumor and organs at risk (OARs), in order to accomplish the planned dose distribution in the reality of each irradiation session. In-room imaging techniques for patient setup verification and tumor targeting may benefit of the combined daily use of optical tracking technologies, supported by techniques for the detection and compensation of organ motion events. Multiple solutions to enhance the use of optical tracking for the on-line correction of target localization uncertainties are described, with specific emphasis on the compensation of setup errors, breathing movements and non-rigid deformations. The final goal is the implementation of customized protocols where appropriate external landmarks, to be tracked in real-time by means of noninvasive optical devices, are selected as a function of inner target localization. The presented methodology features high accuracy in patient setup optimization, also providing a valuable tool for on-line patient surveillance, taking into account both breathing and deformation effects. The methodic application of optical tracking is put forward to represent a reliable and low cost procedure for the reduction of safety margins, once the patient-specific correlation between external landmarks and inner structures has been established. Therefore, the integration of optical tracking with in-room imaging devices is proposed as a way to gain higher confidence in the framework of Image Guided Radiation Therapy (IGRT) treatments

    Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy

    Get PDF
    In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of -8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods

    Deep learning-based overall survival prediction model in patients with rare cancer: a case study for primary central nervous system lymphoma

    Get PDF
    Purpose Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lymphoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL, it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning (DL) overcomes this limitation.Methods In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied.Results We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)-area under curve = 0.81(0.03), accuracy = 0.87(0.07), precision = 0.88(0.07), recall = 0.88(0.07) and F1-score = 0.87(0.07), while compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome.Conclusions All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient populations with rare diseases, to further promote the clinical role of our model

    Nonpegylated liposomal doxorubicin combination regimen in patients with diffuse large B-cell lymphoma and cardiac comorbidity. Results of the HEART01 phase II trial conducted by the Fondazione Italiana Linfomi

    Get PDF
    The purpose of this phase 2, multicenter study was to determine the activity and safety of nonpegylated liposomal doxorubicin as part of "R-COMP" combination in patients with diffuse large B-cell lymphoma and coexisting cardiac disorders. The study was conducted using a Bayesian continuing assessment method using complete remission rate and rate of cardiac events as study endpoints. Between November 2009 and October 2011, 50 evaluable patients were enrolled (median age, 76\ua0years). Median baseline left ventricular ejection fraction (LVEF) was 60%. Ischemic cardiopathy was the most frequent preexisting cardiac disorder (35%), followed by atrial fibrillation (15%), left ventricular hypertrophy (13%), and baseline LVEF <50% (12%). Based on the intent to treat analysis, overall response rate was 72%, including 28 patients in complete remission (complete remission rate, 56%), and 8 in partial remission (16%). At the end of treatment, grades 3 to 4 cardiac events were observed in 6 patients. No significant modifications from baseline values of LVEF were observed during treatment and follow-up. Nonpegylated liposomal doxorubicin instead of doxorubicin in the R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) regimen is a feasible option for patients with diffuse large B-cell lymphoma presenting with concomitant cardiac disorders

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p
    • …
    corecore