18 research outputs found

    Quantity and quality of retrograde menstruation: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to test the hypothesis that menstruation is associated with a higher concentration of endometrial cells in peritoneal fluid(PF) and with increased white and red blood cell concentration in PF when compared to nonmenstrual phases of the cycle.</p> <p>Methods</p> <p>PF was obtained at laparoscopy from 107 women with endometriosis (n = 59) and controls with a normal pelvis (n = 48) during the luteal (n = 46), follicular (n = 38) or menstrual (n = 23) phase of the cycle. Endometriosis was classified according to the classification of the American Society for Reproductive Medicine (rAFS into minimal (n = 25), mild(n = 20), moderate(n = 6) and severe(n = 8) disease. Cell counts (leucocytes, erythrocytes, thrombocytes) were determined on a cell counter. In a subset of 32 patients (13 controls and 19 women with endometriosis), PF was fixed, processed and thinlayers were prepared and stained with Papanicolaou method and with immunocytochemistry using monoclonal antibodies against cytokeratin 7(CK 7), CK 8/18, Ber-Ep4, vimentin, calretinin and CD68. Ber-Ep4 is a marker for cells with epithelial origin (in some cases for mesothelial cells as well). CD68 is specific for cells from monocyte/macrophage lineage; CK7 and CK8/18 are markers for both endometrial epithelial and mesothelial cells, whereas calretinin and vimentin are markers for both endometrial stromal and mesothelial cells.</p> <p>Results</p> <p>In comparison with the nonmenstrual phase of the cycle, analysis of PF during menstruation showed an increased concentration of leucocytes (3.3 &#215; 10<sup>9</sup>/L vs 0.8 &#215; 10<sup>9</sup>/L, P = 0.03), erythrocytes (0.3 &#215; 10<sup>12</sup>/L vs 0.02 &#215; 10<sup>12</sup>/L, P = 0.006), hematocrit (0.03 L/L vs 0.003 L/L, P = 0.01) and hemoglobin (0.8 g/dL vs 0.1 g/dL, P = 0.01). Mesothelial cells stained positively with CK7, CK8/18, vimentin, and calretinin. Cells positive for Ber-Ep4 were not observed, except in 2 patients with endometriosis investigated during menses. In all patients 50-98% of single cells were strongly positive for both vimentin and CD68.</p> <p>Conclusion</p> <p>When compared to nonmenstrual phases of the cycle, menstruation is associated with an increased concentration of red and white blood cells in PF. However, the presence of EM cells that are detectable by immunohistochemistry in PF is low during all phases of the cycle, including menstruation.</p

    The Cell Envelope Structure of Cable Bacteria

    Get PDF
    Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria

    The cell envelope structure of cable bacteria

    Get PDF
    Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a similar to 50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria

    A thyroid thriller: acute transient and symmetric goiter after fine-needle aspiration of a solitary thyroid nodule

    No full text
    Objective: To report a case of a patient who developed an acute and transient, tender, and bilateral swelling of the thyroid that occurred during fine-needle aspiration (FNA) of a solitary nodule in the left thyroid lobe; to add accurate ultrasound measurements to support our clinical observation; and to analyze a possible underlying mechanism of this rare condition. Results and clinical follow-up: The calculated thyroid volume increased from 23 to 57mL before and at 4 minutes, respectively, after the needle aspiration, but the thyroid volume returned to prediagnostic level after 4 hours. Cytology, serum calcitonin, and histology were concordant, and the nodule was diagnosed as a medullary thyroid carcinoma. Immunohistochemistry was positive for calcitonin, chromogranin, and the very potent vasodilator calcitonin gene-related peptide (CGRP). Conclusion: This is a rare case of acute and transient thyroid swelling during a common procedure as FNA of a thyroid nodule. This is the first case with documented acute volume expansion quantified by ultrasound measurements supporting our clinical observation, which is in accordance with two historical case reports. The clinical and ultrasound data support the hypothesis of vasodilation as the underlying mechanism, possibly evoked by the release of the vasodilator CGRP.status: publishe

    Polysomy 17 in Breast Cancer: Clinicopathologic Significance and Impact on HER-2 Testing

    No full text
    PURPOSE: Polysomy 17 is frequently found in breast cancer and may complicate the interpretation of HER-2 testing results. We investigated the impact of polysomy 17 on HER-2 testing and studied its clinicopathologic significance in relation to HER2 gene amplification. PATIENTS AND METHODS: In 226 patients with primary invasive breast carcinoma, HER2 gene and chromosome 17 copy numbers were determined by dual-color fluorescent in situ hybridization (FISH). The interpretation of FISH results was based on either absolute HER2 gene copy number or the ratio HER2/chromosome 17. Results were correlated with HER-2 protein expression on immunohistochemistry (IHC), HER2 mRNA expression by reverse transcriptase polymerase chain reaction (RT-PCR), and with various clinicopathologic parameters. RESULTS: All cases with an equivocal HER-2 result by FISH, either by absolute HER2 copy number (44 of 226 patients; 19.5%) or by the ratio HER2/chromosome 17 (three of 226 patients; 1.3%), displayed polysomy 17. On its own, polysomy 17 was not associated with HER-2 overexpression on IHC or increased HER2 mRNA levels by RT-PCR. Moreover, and in contrast with HER2 gene amplification, polysomy 17 was not associated with high tumor grade, hormone receptor negativity, or reduced disease-free survival. CONCLUSION: Polysomy 17 affects HER-2 testing in breast cancer and is a major cause of equivocal results by FISH. We show that tumors displaying polysomy 17 in the absence of HER2 gene amplification resemble more HER-2-negative than HER-2-positive tumors. These findings highlight the need for clinical trials to investigative whether polysomy 17 tumors benefit from HER-2-targeted therapy.status: publishe
    corecore