6 research outputs found

    Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia

    Get PDF
    Producción CientíficaFriedreich’s ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.2015-09-1

    GFP-Aequorin Protein Sensor for Ex Vivo and In Vivo Imaging of Ca(2+) Dynamics in High-Ca(2+) Organelles.

    No full text
    International audienceProper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease

    Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging

    No full text
    Abstract The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-β management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions

    Presentación del Proyecto de innovación docente ¡MANOS ARRIBA!

    No full text
    El proyecto de innovación docente ¡MANOS ARRIBA! surge a partir de la inquietud de los profesores del Departamento de Química Analítica debida a un rendimiento inferior al esperado por parte de los alumnos durante las prácticas de laboratorio. Se plantea por lo tanto cambiar el formato de las prácticas de laboratorio de las asignaturas Bases Químicas del Medio Ambiente del Grado en Ciencias Ambientales, Métodos en Oceanografía del Grado de Ciencias del Mar y Química Analítica II de los Grados de Enología y Química, para mejorar el rendimiento de los alumnos durante las prácticas. El formato de prácticas se asemejará a un talent show en el que los alumnos deberán completar la practica en un tiempo limitado, hasta que el profesor de la voz ¡MANOS ARRIBA!. En este momento los alumnos no podrán realizar ninguna operación más en el laboratorio y se evaluarán sus resultados. Se tendrán en cuenta el tiempo de de realización de la práctica, grado de comprensión de los experimentos, calidad de los resultados y forma de trabajar en el laboratorio. Las puntuaciones se acumularán a lo largo del desarrollo de las prácticas para que al final de la asignatura, el ganador obtenga un incentivo. De este modo se pretende mejorar la motivación de los alumnos de cara a las prácticas, fomentar el espíritu competitivo y sobre todo mejorar su rendimiento durante las prácticasVídeo de 6:30 minutos de duració
    corecore