360 research outputs found

    The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies

    Get PDF
    The latest developments of planetary exploration missions devoted to minor bodies required new solutions to correctly visualize and analyse data acquired over irregularly shaped bodies. ASI Space Science Data Center (SSDC-ASI, formerly ASDC-ASI Science Data Center) worked on this task since early 2013, when started developing the web tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration) mainly focused on the Rosetta/ESA space mission data. In order to visualize very high-resolution shape models, MATISSE uses a Python module (vtpMaker), which can also be launched as a stand-alone command-line software. MATISSE and vtpMaker are part of the SSDC contribution to the new challenges imposed by the "orbital exploration" of minor bodies: 1) MATISSE allows to search for specific observations inside datasets and then analyse them in parallel, providing high-level outputs; 2) the 3D capabilities of both tools are critical in inferring information otherwise difficult to retrieve for non-spherical targets and, as in the case for the GIADA instrument onboard Rosetta, to visualize data related to the coma. New tasks and features adding valuable capabilities to the minor bodies SSDC tools are planned for the near future thanks to new collaborations

    Spin Temperatures of Ammonia and Water Molecules in Comets

    Get PDF
    The nuclear spin temperature, which is derived from the ortho-to-para abundance ratio of molecules measured in cometary comae, is a clue to the formation conditions of cometary materials, especially the physical temperature at which the molecules were formed. In this paper we present new results for the nuclear spin temperatures of ammonia in comets Hale-Bopp (C/1995 O1) and 153P/Ikeya-Zhang based on observations of NH2 at 26 and 32 K, respectively. These results are similar to previous measurements in two other comets, and the nuclear spin temperatures of ammonia in the four comets are concentrated at about 30 K. We emphasize that the nuclear spin temperatures of water measured thus far have also been about 30 K. In particular, the spin temperatures of ammonia and water are equal to each other within ±1 σ error bars in the case of comet Hale-Bopp. These nuclear spin temperatures of ammonia and water were measured under quite different conditions (heliocentric distances and gas production rates). There is no clear trend between the nuclear spin temperatures and the heliocentric distances, the gas production rates, or the orbital periods of the comets. The possibilities of the ortho-to-para conversion in the coma and in the nucleus are discussed. The present data set implies that the ortho-to-para ratios were not altered after the molecules were incorporated into the cometary nuclei. It appears that cometary ammonia and water molecules formed on cold grains at about 30 K

    Triple F - A Comet Nucleus Sample Return Mission

    Get PDF
    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS

    Ceres water regime: surface temperature, water sublimation and transient exo(atmo)sphere

    Get PDF
    Recent observations of water emission around Ceres suggest the presence of an ice layer on or beneath the surface of this asteroid. Several mechanisms have been suggested to explain these plumes, among which cometary-like sublimation seems to be plausible, since there is a correlation between the magnitude of the emission and the change in the heliocentric distance along the orbit. In this work, we applied a comet sublimation model to study the plausible scenarios that match with Herschel observations of the water flux (1026 molecules s-1). Each scenario is characterized by a well-defined set of physical and orbital parameters. Moreover, a study of the dynamic evolution of the H2O plume has been performed, showing that an optically thin transient atmospheric envelope, with a typical timescale of some tens of days, can be maintained by the H2O surface emission. Our simulations could be useful theoretical support for the Dawn NASA mission by giving a better understanding of the physical conditions for water sublimation and ice stability

    Variations in the amount of water ice on Ceres' surface suggest a seasonal water cycle.

    Get PDF
    The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time
    corecore