37 research outputs found

    Biochars from Spirulina as an alternative material in the purification of lactic acid from a fermentation broth

    Get PDF
    In this study, Spirulina biochar obtained from fast pyrolysis was evaluated as an alternative to commercial activated carbon for lactic acid (LA) purification from a fermentation broth. Thermally (350 and 400 C treatment of the biochar in N2 atmosphere for 4 h) and chemically (KOH solution impregnation of the algal material and fast pyrolysis to obtain the biochar) activated Spirulina biochars were also tested. The biochars were previously characterized using SEM and FT-IR. Two purification methodologies were evaluated: filtration and stirring. The stirring method prove to be simpler, faster and chipper, with excellent purification results. All the evaluated biochars presented a performance comparable to that of activated carbon in the stirring methodology. Spirulina biochar and the KOH activated biochar were the once with the best results, with 92 and 82% LA recovery and 82 and 90% protein removal efficiencies, respectively.Fil: Piloni, Roxana Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coelho, Luciana Fontes. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Sass, Daiane Cristina. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Lanteri, Mario Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; ArgentinaFil: Bertochi, Maria Aparecida Zaghete. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Moyano, Elizabeth Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Contiero, Jonas. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    Synthesis of Lamellar Structures of Magnesium (II), Aluminum (III) and Iron (III) Hydroxides Interchanged with Carbonate Ion through Precipitation in pH 11

    Get PDF
    The synthesis of layered double hydroxides has been investigated aiming innumerous applications, mainly as adsorbent, catalyst and catalyst support materials, due their ability to adsorb anionic species and several aqueous soluble compounds. The carbonated magnesium-aluminium hydrotalcites are known as the main class of the layered double hydroxides and new composition are often characterized under the view point of thermal stability, crystallinity and catalytic performance for many reactions. Few trivalent cations are able to replace the aluminum one due the severe restriction for oxidation state and ionic radii, but the iron (III) one seems to be high potential to improve some of the characteristics required for that materials, such as specificity for built-rebuilt bonds in organic molecules. In this work, we have synthesized carbonated magnesium-aluminum hydrotalcite samples through the coprecipitation at pH 11 and investigate the Fe(III) insertion at 10 and 20 mol%. Thermal analysis, FTIR spectrometry and X-ray diffractometry techniques were used to understand the influence of the Fe(III) co-substitution, keeping the Mg(II) molar fraction invariable among the samples. We show the iron (III) insertion affects the dehydration and dehydroxylation processes due the changes in M-OH bond energies Very homogeneous structures were obtained for all of the samples dried at 100 ºC and a consistent lattice volume expansion was observed as a function of iron (III) content, which can be required for catalyst or catalyst matrix applications. DOI: http://dx.doi.org/10.17807/orbital.v10i1.103

    Uso das técnicas de infravermelho e de ressonância magnética nuclear na caracterização da reação ácido-base de um cimento odontológico experimental

    No full text
    Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements

    Evaluation of glass ionomer cements properties obtained from niobium silicate glasses prepared by chemical process

    No full text
    Abstract Glass ionomer cements (GICs) are glass and polymer composite materials. These materials currently find use in the dental field. The purpose of this work is to obtain systems based on composition 4.5SiO 2 -3Al 2 O 3 -XNb 2 O 5 -2CaO to be used in Dentistry. The systems were prepared by chemical route at 700°C. The results obtained by XRD and DTA showed that all systems prepared are glasses. The structures of the obtained glasses were compared to commercial material using 27 Al and 29 Si MAS NMR. The analysis of MAS NMR spectra indicated that the systems developed and commercial material are formed by SiO 4 and AlO 4 linked tetrahedra. The properties of glass ionomer cements based on the glasses prepared with several niobium contents were studied. Setting and working times of the cement pastes, microhardness and diametral tensile strength were evaluated for the experimental GICs and commercial luting cements. It was concluded that setting time of the cement pastes increased with increasing niobium content of the glasses (X). The properties to the GICs such as setting time and microhardness were influenced by niobium content

    Synthesis and characterization of NaNbO3 mesostructure by a microwave-assisted hydrothermal method

    No full text
    In the present work, we report the synthesis and characterization of NaNbO3 particles obtained by microwave-assisted hydrothermal method from Nb2O5 and NaOH. The synthesis was made at different periods at 180 °C and 300W. The crystallization of NaNbO3 structures produced Na2Nb2O6.H2O in the intermediate phase with fiber-like morphology, and this is associated with the synthesis time. Pure orthorhombic NaNbO3 with cube-like morphology originates after synthesizing for 240 minutes. To verify the remnant polarization of particles, films were obtained by electrophoresis process and sintered at 800°C for 10 minutes in a microwave furnace. The films characterization indicated that films of niobate with fiber-like morphology present remaining polarization, and the morphology of cubes did not show remaining polarization. Considering these results, it can be concluded that the morphology implemented ferroelectric property of NaNbO3

    The effect of Cr concentration and preparation method on the microstructure and electrical characterization of SnO2-based ceramics

    No full text
    This paper reports a study of the influence of Cr concentration and preparation method in the electrical conductivity and microstructure of SnO2-based powders doped with Mn and Nb, prepared by an organic route (Pechini method) and a mixture of oxides. All the samples were compacted into discs and sintered at 1300 °C for 3h, resulting in ceramics with relative density varying between 81 and 99%. The powders were morphologically characterized by X-ray diffraction and their specific surface area was determined by N2 adsorption/desorption isotherms. Electrical conductivity characterization indicated that the conductivity decreases as Cr concentration increases, probably due to Cr segregation at grain boundaries, which reduces grain size, increasing the number of resistive boundaries, thus limiting the passage of current

    Observation of piezoelectric response on tungsten doped barium zirconium titanate ceramics

    No full text
    This study describes observation of piezoelectric response of Ba(Zr 0.10Ti 0.90.O3 ceramics modified with tungsten (BZT:2W) by the mixed oxide method. According to X ray diffraction analysis, the ceramics are free of secondary phases. Transmission electron microscopy (TEM) analyses reveals the absence of segregates in the grain boundaries indicates the high solubility of WO3 in the BZT matrix. The dielectric permittivity measured at a frequency of 10 KHz was equal to 6500 with dieletric loss of 0.15. A typical hysteresis loop was observed at room temperature. Electron Paramagnetic Resonance (EPR) analyses reveals that substitution of W6+ by Ti4+ causes distortion in the crystal structure changing lattice parameter. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does. Copyright © 2010 American Scientific Publishers
    corecore