32 research outputs found

    Relevance of internal time and circadian robustness for cancer patients

    Get PDF
    International audienceAbstractBackgroundAdequate circadian timing of cancer treatment schedules (chronotherapy) can enhance tolerance and efficacy several-fold in experimental and clinical situations. However, the optimal timing varies according to sex, genetic background and lifestyle. Here, we compute the individual phase of the Circadian Timing System to decipher the internal timing of each patient and find the optimal treatment timing.MethodsTwenty-four patients (11 male; 13 female), aged 36 to 77 years, with advanced or metastatic gastro-intestinal cancer were recruited. Inner wrist surface Temperature, arm Activity and Position (TAP) were recorded every 10 min for 12 days, divided into three 4-day spans before, during and after a course of a set chronotherapy schedule. Pertinent indexes, I < O and a new biomarker, DI (degree of temporal internal order maintenance), were computed for each patient and period.ResultsThree circadian rhythms and the TAP rhythm grew less stable and more fragmented in response to treatment. Furthermore, large inter- and intra-individual changes were found for T, A, P and TAP patterns, with phase differences of up to 12 hours among patients. A moderate perturbation of temporal internal order was observed, but the administration of fixed chronomodulated chemotherapy partially resynchronized temperature and activity rhythms by the end of the study.ConclusionsThe integrated variable TAP, together with the asynchrony among rhythms revealed by the new biomarker DI, would help in the personalization of cancer chronotherapy, taking into account individual circadian phase markers

    Nurses' sleep quality, work environment and quality of care in the Spanish National Health System: observational study among different shifts

    Get PDF
    OBJECTIVE: The main objective of this study was to determine the relationship between the characteristics of nurses' work environments in hospitals in the Spanish National Health System (SNHS) with nurse reported quality of care, and how care was provided by using different shifts schemes. The study also examined the relationship between job satisfaction, burnout, sleep quality and daytime drowsiness of nurses and shift work. METHODS: This was a multicentre, observational, descriptive, cross-sectional study, centred on a self-administered questionnaire. The study was conducted in seven SNHS hospitals of different sizes. We recruited 635 registered nurses who worked on day, night and rotational shifts on surgical, medical and critical care units. Their average age was 41.1 years, their average work experience was 16.4 years and 90% worked full time. A descriptive and bivariate analysis was carried out to study the relationship between work environment, quality and safety care, and sleep quality of nurses working different shift patterns. RESULTS: 65.4% (410) of nurses worked on a rotating shift. The Practice Environment Scale of the Nursing Work Index classification ranked 20% (95) as favourable, showing differences in nurse manager ability, leadership and support between shifts (p=0.003). 46.6% (286) were sure that patients could manage their self-care after discharge, but there were differences between shifts (p=0.035). 33.1% (201) agreed with information being lost in the shift change, showing differences between shifts (p=0.002). The Pittsburgh Sleep Quality Index reflected an average of 6.8 (SD 3.39), with differences between shifts (p=0.017). CONCLUSIONS: Nursing requires shift work, and the results showed that the rotating shift was the most common. Rotating shift nurses reported worse perception in organisational and work environmental factors. Rotating and night shift nurses were less confident about patients' competence of self-care after discharge. The most common nursing care omissions reported were related to nursing care plans. For the Global Sleep Quality score, difference were found between day and night shift workers.This study was carried out as part of a project entitled ‘Functioning of the circadian system, working environment, and the organisation of nursing care of hospitals of the National Health System’, financed by the Spanish Health Research Fund (PI 11/00646, Health Ministry), the Ministry of Science and Innovation (SAF2013-49132-C2-1-R) and the Institute of Health Carlos III (RETICEF, RD12/0043/0011, RD12/0043/0006). The project was approved by the Spanish Health Research Fund (Fondo de Investigaciones Sanitarias PI11/00646).S

    Living at the Wrong Time: Effects of Unmatching Official Time in Portugal and Western Spain

    Get PDF
    Human circadian rhythmicity is subjected to the internal circadian clock, the sun and social clocks (official time, social/work schedules). The discrepancy among these clocks, as occurs when official time does not match its geographical time zone, may produce circadian disruption. Western Spain (GMT+1/+2) and Portugal (GMT0/+1) share similar longitudes (sun time) but have different official times. This provides a unique opportunity to evaluate the effects of official time on circadian rhythmicity and sleep in elderly and retired populations (with no remunerated duties presumed, although other social commitments may be present) at both locations. Although both populations slept enough for their age (7-8 h), circadian robustness (e.g., interdaily stability, relative amplitude) was greater in Portugal, especially during weekdays, while greater desynchronization (both body temperature vs. motor activity and body temperature vs. light exposure) tended to occur in the Spaniards. Once corrected by GMT0, meals took place later in Spain than in Portugal, especially as the day progresses, and a possible interplay between bed/meal timings and internal desynchronization was found. Our results point to the possible deleterious effect on circadian system robustness when official time is misaligned with its geographical time zone.This research was funded by the Ministry of Economy and Competitiveness, the Instituto de Salud Carlos III through a CIBERFES grant (CB16/10/00239, CB16/10/00468); Fundación General del Consejo Superior de Investigaciones Científicas through grant ModulEn (POCTEP 0348_CIE_6_E, Programa de cooperación INTERREG V-A España-Portugal) and Diabfrail LatAm (European Union Horizon 2020 research and innovation programme No. 825546) awarded to MAR (all co-financed by FEDER). Grant RTI2018-093528-B-I00, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”. A research fellowship was granted to MAB-C (20401/SF/17, Fundación Séneca, Región de Murcia (Spain)).S

    Validation of a Device for the Ambulatory Monitoring of Sleep Patterns: A Pilot Study on Parkinson's Disease

    Get PDF
    The development of wearable devices has increase interest in the use of ambulatory methods to detect sleep disorders more objectively than those permitted by subjective scales evaluating sleep quality, while subjects maintain their usual lifestyle. This study aims to validate an ambulatory circadian monitoring (ACM) device for the detection of sleep and wake states and apply it to the evaluation of sleep quality in patients with Parkinson disease (PD). A polysomnographic validation study was conducted on a group of patients with different sleep disorders in a preliminary phase, followed by a pilot study to apply this methodology to PD patients. The ACM device makes it possible to estimate the main sleep parameters very accurately, as demonstrated by: (a) the lack of significant differences between the mean values detected by PSG and ACM in time in bed (TIB), total sleep time (TST), sleep efficiency (SE), and time awake after sleep onset (WASO); (b) the slope of the correlation lines between the parameters estimated by the two procedures, very close to 1, which demonstrates the linearity of the predictions; (c) the low bias value in the estimates obtained through ACM. Sleep in PD is associated with lower distal skin temperature, efficiency and overall sleep time; greater WASO, activity during sleep and duration of naps and a worse circadian function index. In summary, the ACM device has proven to be clinically useful to evaluate sleep in an objective manner, thanks to the integrated management of different complementary variables, having advantages over conventional actigraphy

    A Comparison of B16 Melanoma Cells and 3T3 Fibroblasts Concerning Cell Viability and ROS Production in the Presence of Melatonin, Tested Over a Wide Range of Concentrations

    Get PDF
    Melatonin is a pleiotropic molecule with many cellular and systemic actions, including chronobiotic effects. Beneficial effects are widely documented concerning the treatment of neoplastic diseases in vivo as well as reductions in viability of cultured cells from melanoma, one of the most aggressive cancers in humans. However, studies of its effects on non-tumor cells in vitro have not focused on viability, except for experiments aiming to protect against oxidotoxicity or other toxicological insults. Furthermore, there is no agreement on the range of effective melatonin concentrations in vitro, and the mechanisms that reduce cell viability have remained unclear. Tumor cell-specific increases in the production of reactive oxygen and nitrogen species (ROS/RNS) may provide a possible explanation. Our aim was to analyze the potential inhibition of tumor (B16 melanoma 4A5) and non-tumor cell (3T3 Swiss albino) viability using a wide range of melatonin concentrations (10−11–10−2 M), and to determine whether intracellular ROS enhancement was involved in this process. In the absence of fetal bovine serum (FBS), low melatonin concentrations (10−9–10−5 M) reduced the proliferation of melanoma cells with no effect in fibroblasts, whereas, in the presence of FBS, they had no effect or even increased the proliferation of both fibroblast and melanoma cells. Melatonin concentrations in the upper millimolar range increased ROS levels and reduced the viability of both cell types, but more markedly so in non-tumor cells. Thus, low melatonin concentrations reduce proliferation in this specific melanoma cell line, whereas high concentrations affect the viability of both tumor (B16 4A5 melanoma) and non-tumor (3T3 fibroblasts) cells. Increased ROS levels in both lines indicate a role for ROS production in the reduction of cell viability at high—but not low—melatonin concentrations, although the mechanism of action still remains to be elucidated

    Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects.

    Get PDF
    Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18-24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a "constant routine" protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions

    Living Without Temporal Cues: A Case Study

    Get PDF
    Isolation from external time cues allows endogenous circadian rhythmicity to be demonstrated. In this study, also filmed as a television documentary, we assessed rhythmic changes in a healthy man time isolated in a bunker for 9 days/nights. During this period the lighting conditions were varied between: (1) self-selected light/dark cycle, (2) constant dim light, and (3) light/dark cycle with early wake up. A range of variables was assessed and related to the sleep-wake cycle, psychomotor and physical performance and clock-time estimation. This case study using modern non-invasive monitoring techniques emphasizes how different physiological circadian rhythms persist in temporal isolation under constant dim light conditions with different waveforms, free-running with a period (t) between 24 and 25 h. In addition, a significant correlation between time estimation and mid-sleep time, a proxy for circadian phase, was demonstrated

    Electrochromic selective filtering of chronodisruptive visible wavelengths.

    No full text
    We present evidence of pupil response modification, as well as differential theoretical melatonin suppression through selective and dynamic electrochromic filtering of visible light in the 400-500 nm range to minimize chronodisruptive nocturnal blue light exposure. A lower activation of intrinsically photosensitive retinal ganglion cells (ipRGCs), the first step for light to reach a human's internal clock, is related to melatonin secretion therefore avoiding detrimental effects of excessive blue light exposure. Pupillary Light Reflex and Color Naming were experimentally assessed under light filtered by two different coloration states (transmissive and absorptive) of these novel dynamic filters, plus an uncoated test device, in 16 volunteers. Also, different commercial light sources at illuminances ranging from 1 to 1000 lux were differentially filtered and compared in terms of theoretical melatonin suppression. Representative parameters of the pupil responses reflected lower pupil constriction when the electrochromic filters (ECFs) were switched on (absorptive state, blue light is absorbed by the filter) compared to uncoated filters (control sample), but failed to do so under transmissive state (blue light passes through the filter) indicating less activation of ipRGCs under absorptive state (although no significant differences between states was found). Out of eight colors tested, just one showed significant differences in naming between both filter states. Thus, the ECF would have some protecting effect on ipRGC activation with very limited changes in color perception. While there are some limitations of the theoretical model used, the absorptive state yielded significantly lower theoretical melatonin suppression in all those light sources containing blue wavelengths across the illuminance range tested. This would open the way for further research on biological applications of electrochromic devices
    corecore