7 research outputs found

    QTL detection in maize testcross progenies as affected by related and unrelated testers

    No full text
    The evaluation of recombinant inbred lines (RILs) per se can be biased by inbreeding depression in case of allogamous species. To overcome this drawback, RILs can be evaluated in combination with testers; however, testers can carry dominant alleles at the quantitative trait loci (QTL), thus hampering their detection. This study was conducted on the maize (Zea mays L.) population of 142 RILs derived from the single cross B73 x H99 to evaluate the role of different testers in affecting: (1) QTL detection, (2) the estimates of their effects, and (3) the consistency of such estimates across testers. Testcrosses (TCs) were produced by crossing RILs with inbred testers B73 [TC(B)], H99 [TC(H)], and Mo17 [TC(M)]. TCs were field tested in three environments. TC(B) mean was higher than TC(H) mean for all traits, while TC(M) mean was the highest for plant vigor traits and grain yield. As to the number of detected QTL, tester Mo17 was superior to H99 and B73 for traits with prevailing additive effects. Several overlaps among the QTL were detected in two or all the three TC populations with QTL effects being almost always consistent (same sign). For traits with prevailing dominance-overdominance effects, as grain yield, the poor performing tester H99 was clearly the most effective; fewer overlaps were found and some of them were inconsistent (different sign). Epistatic interactions were of minor importance. In conclusion, the three testers proved to affect QTL detection and estimation of their effects, especially for traits showing high dominance levels

    Classical Genetic and Quantitative Trait Loci Analyses of Heterosis in a Maize Hybrid Between Two Elite Inbred Lines

    Get PDF
    The exploitation of heterosis is one of the most outstanding advancements in plant breeding, although its genetic basis is not well understood yet. This research was conducted on the materials arising from the maize single cross B73 × H99 to study heterosis by procedures of classical genetic and quantitative trait loci (QTL) analyses. Materials were the basic generations, the derived 142 recombinant inbred lines (RILs), and the three testcross populations obtained by crossing the 142 RILs to each parent and their F1. For seedling weight (SW), number of kernels per plant (NK), and grain yield (GY), heterosis was >100% and the average degree of dominance was >1. Epistasis was significant for SW and NK but not for GY. Several QTL were identified and in most cases they were in the additive–dominance range for traits with low heterosis and mostly in the dominance–overdominance range for plant height (PH), SW, NK, and GY. Only a few QTL with digenic epistasis were identified. The importance of dominance effects was confirmed by highly significant correlations between heterozygosity level and phenotypic performance, especially for GY. Some chromosome regions presented overlaps of overdominant QTL for SW, PH, NK, and GY, suggesting pleiotropic effects on overall plant vigor

    Classical Genetic and Quantitative Trait Loci Analyses of Heterosis in a Maize Hybrid Between Two Elite Inbred Lines

    Get PDF
    The exploitation of heterosis is one of the most outstanding advancements in plant breeding, although its genetic basis is not well understood yet. This research was conducted on the materials arising from the maize single cross B73 × H99 to study heterosis by procedures of classical genetic and quantitative trait loci (QTL) analyses. Materials were the basic generations, the derived 142 recombinant inbred lines (RILs), and the three testcross populations obtained by crossing the 142 RILs to each parent and their F1. For seedling weight (SW), number of kernels per plant (NK), and grain yield (GY), heterosis was >100% and the average degree of dominance was >1. Epistasis was significant for SW and NK but not for GY. Several QTL were identified and in most cases they were in the additive–dominance range for traits with low heterosis and mostly in the dominance–overdominance range for plant height (PH), SW, NK, and GY. Only a few QTL with digenic epistasis were identified. The importance of dominance effects was confirmed by highly significant correlations between heterozygosity level and phenotypic performance, especially for GY. Some chromosome regions presented overlaps of overdominant QTL for SW, PH, NK, and GY, suggesting pleiotropic effects on overall plant vigor

    Prioritizing quantitative trait loci for root system architecture in tetraploid wheat

    No full text
    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs

    A multi-site experiment in a network of European fields for assessing the maize yield response to environmental scenarios

    No full text
    This dataset comes from the European Union project DROPS (DROught-tolerant yielding PlantS). A panel of 256 maize hybrids was grown with two water regimes (irrigated or rainfed), in seven fields in 2012 and 2013, respectively, spread along a climatic transect from western to eastern Europe, plus one site in Chile in 2013. This resulted in 29 experiments defined as the combination of one year, one site and one water regime, with two and three repetitions for rainfed and irrigated treatments, respectively. A detailed environmental characterisation was carried out, with hourly records of micrometeorological data and soil water status, and associated with precise measurement of phenology. Grain yield and its components were measured at the end of the experiment. The main purpose of this dataset consists in using the environmental characterisation to quantify the genetic variability of maize grain yield in response to the environmental drivers for genotype-by-environment interaction. For instance, allelic effects at QTLs identified over the field network are consistent within a scenario but largely differ between scenarios
    corecore