145 research outputs found

    Color-spin locking in a self-consistent Dyson-Schwinger approach

    Get PDF
    We investigate the color-spin locked (CSL) phase of spin-one color- superconducting quark matter using a truncated Dyson-Schwinger equation for the quark propagator in Landau gauge. Starting from the most general parity conserving ansatz allowed by the CSL symmetry, the Dyson-Schwinger equation is solved self-consistently and dispersion relations are discussed. We find that chiral symmetry is spontaneously broken due to terms which have previously been neglected. As a consequence, the excitation spectrum contains only gapped modes even for massless quarks. Moreover, at moderate chemical potentials the quasiparticle pairing gaps are several times larger than expected from extrapolated weak-coupling results.Comment: 9 pages, 7 figure

    Analysis of HOM interaction between cavities by multi-modal s-parameter measurements

    Get PDF
    Accelerating cavities exchange HOM power through interconnecting beam pipes in case of signal frequencies above the cut-off of their propagating waveguide modes. This may lead either to improved HOM damping or - in the case most severe - to unwanted phase coherence of fields to the beam. Therefore the knowledge of the scattering properties of a cavity as a line element is needed to analyse all kinds of RF cavity-cavity interaction. Since there is a lack of measurement tools capable to provide a multidimensional scattering matrix at a given frequency point, we have been developing a method for this purpose. It uses a set of 2-port S-parameters of the device under test, embedded in a number of geometrically different RF environments. The application of the method is demonstrated with copper models of TESLA cavities

    Evidence of Increased Radio-Frequency Losses in Cavities from the Fundamental Power Coupler Cold Window

    Get PDF
    High radio-frequency (rf) losses measured for cavities in original Continuous Electron Beam Accelerator Facility (CEBAF) cryomodules, compared to the losses measured in single-cavity tests, have been a long-standing issue related to their performance. We summarize experimental evidence of increased rf losses in CEBAF cavities arising from the fundamental power coupler cold window and waveguide, respectively. Cryogenic rf tests were done on cavities tested in vertical cryostats as well as inside cryomodules in the accelerator tunnel. The cold window metallization losses were assessed by combining numerical results with measured data obtained with an existing cryogenic waveguide resonator setup. The results showed that the cold window metallization losses can increase the cavity rf heat load at 2.07 K by up to 86%, depending on the standing-wave pattern in the fundamental power coupler waveguide, and that such losses are reduced if the distance between the waveguide and the cavity cells is increased

    On the relation of quark confinement and chiral symmetry breaking

    Full text link
    We study the phase diagram of QCD with the help of order parameters for chiral symmetry breaking and quark confinement. We also introduce a new order parameter for the confinement phase transition, which is related to the quark density. It is easily accessible by different theoretical approaches, such as functional approaches or lattice simulations. Its relation to the Polyakov loop expectation value is discussed and the QCD phase diagram is analysed. Our results suggest a close relation between the chiral and the confinement phase transition.Comment: 5 pages, 3 figure

    Confinement in Polyakov gauge and the QCD phase diagram

    Get PDF
    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We will investigate a footing on which these can be dealt with in a uniform way
    • …
    corecore