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Quarkeinschluß in Polyakov Eichung
und das

Phasendiagramm der Quantenchromodynamik
Wir untersuchen die Quantenchromodynamik (QCD) im Rahmen der funktionalen

Renormierungsgruppenmethoden (fRG). Darin beschreiben wir den Zentrumsphasen-
übergang von der Phase mit Quarkeinschluß in die Quark-Gluon-Plasma Phase. Wir
konzentrieren uns dabei auf eine physikalische Eichung, in der der Mechanismus des
Phasenübergangs deutlich wird. Wir finden gute Übereinstimmung mit Gitter-QCD
Ergebnissen, sowie mit Resultaten aus funktionalen Methoden erzielt in anderen Eichun-
gen. Der Phasenübergang ist, wie erwartet, von zweiter Ordnung und wir berechnen
kritische Exponenten. Verschiedene Erweiterungen des Modells werden diskutiert.

Im Zusammenhang mit der Untersuchung des QCD Phasendiagramms, berechnen wir
die Effekte die dynamische Quarks auf das Verhalten der Eichkopplung ausüben. Auch
untersuchen wir wie sich diese auf den Zentrumphasenübergang auswirken, damit er-
möglichen die Quarks, ein chemisches Potential zu berücksichtigen. Im weiteren stellen
wir eine Verbindung zwischen dem Quarkeinschluß und chiraler Symmetrybrechung her,
die für die Masse der Hadronen verantwortlich gemacht wird.

Die während der Rechnungen auftretenden Skalenabhängigkeiten der Felder werden
zum Abschluß der Arbeit im Rahmen der funktionalen Renormierungsgruppenmethodik
auf ein einheitliches Fundament gestellt.

Confinement in Polyakov Gauge
and the

Phasen Diagram of Quantum Chromodynamics
We investigate Quantum Chromodynamics (QCD) in the framework of the functional

renormalisation group (fRG). Thereby describing the phase transition from the phase
with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge
in which the mechanism driving the phase transition is discernible. We find results
compatible with lattice QCD data, as well as with functional methods applied in different
gauges. The phase transition is of the expected order and we computed critical exponents.
Extensions of the model are discussed.

When investigating the QCD phase diagram, we compute the effects of dynamical
quarks at finite density on the running of the gauge coupling. Additionally, we calculate
how these affect the deconfinement phase transition, also, dynamical quarks allow for
the inclusion of a finite chemical potential. Concluding the investigation of the phase
diagram, we establish a relation between confinement and chiral symmetry breaking,
which is tied to the dynamical generation of hadron masses.

In the investigations, we often encounter scale dependent fields. We will investigate a
footing on which these can be dealt with in a uniform way.
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1 The QCD phase diagram

“Je größer die Schwierigkeiten, desto größer der Sieg”
Marcus Tulius Cicero

It is widely believed that Quantum Chromodynamics (QCD) is the correct quantum
field theory of strong interactions at energy scales accessible in experiments today. In
the high energy limit QCD can be successfully treated perturbatively, in an expansion
in powers of the coupling constant. The validity of this expansion is a consequence
of asymptotic freedom, the notion that at asymptotically short distances the coupling
strength vanishes. The discovery of this property has been awarded with the Nobel
prize [1, 2] and was one keystone to establish QCD as the theory of strong interactions
consistent with experiments.

The perturbative treatment fails in the low and intermediate energy regime, where
phenomena like chiral symmetry breaking (χSB) or confinement, i.e. the permanent
enclosure of all coloured degrees of freedom inside colour neutral objects (hadrons) occur.
Due to the non-Abelian nature of the gauge symmetry of QCD, it describes not only
interactions between quarks and gluons, but also among the gluons themselves. It is
expected that this self-interaction generates confinement.

Confinement leads to the challenging situation that the theoretical formulation of QCD
is surprisingly straightforward, while the connection to observables is not. It is therefore
not only essential to understand the underlying QCD phenomena, but also to compute
hadronic observables from the fundamental theory.
χSB manifests itself in the bound state spectrum, with hadrons having masses of the

order of 1 GeV, quite independently of the current quark masses. Again the situation
arises, that while the underlying theory is well know, getting predictions proves to be
very difficult.

As both phenomena, χSB and confinement, root in the theory, it is highly desirable to
have an understanding of their interplay and occurrence. There are indications, that both
phenomena are closely related and in the context of the phase diagram share a common
phase boundary. Yet, there is no rigourous prove of the latter, which is an active area of
research.

Related to the understanding of QCD phenomena like confinement or chiral symme-
try breaking is knowledge about the QCD phase diagram. A version of the QCD phase
diagram, as it is conjectured nowadays, is displayed in Fig. 1.1. Shortly after establish-
ing QCD as the theory of strong interactions, it has already been argued, that hadrons,
which consist out of quarks and gluons should dissociate at high enough temperatures
or densities [3, 4]. This area of research has recently attracted a lot of attention, since
much progress has been made from the experimental as well as from the theoretical side.
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1 The QCD phase diagram

Figure 1.1: Sketch of the QCD phase diagram [5].

Moreover, it is also relevant for cosmology, as e.g. the early universe underwent the
confinement and chiral phase transition from the Quark-Gluon-Plasma phase into the
hadronic phase, some few microseconds after the Big Bang. Another important thermo-
dynamic property, the equation of state has implications for the formation of compact
stars. For neutron stars as indicated in Fig. 1.1, the region of very low temperatures and
intermediate densities is relevant. Their properties are also dependent on the location
and type of the chiral phase transition. In supernovae explosions, a region that extends
up to 50 MeV in the temperature direction is relevant, as is the influence of the chiral
phase transition.
The phases of QCD, of course, depend on many thermodynamical parameters and

each combination covers different aspects of the underlying physics. We want to focus
on the phase diagram arising for different temperatures and baryon densities, which are
ultimately related to the chemical potential.
Indicated are the phases of the Quark-Gluon-Plasma in the high temperature regime,

the hadron gas in the low temperature, low density regime and the domain of colocolourr
superconductivity in the low temperature, high density regime. This sketch also shows
where future experiments will work.
Theoretically easily accessible are the domains of high temperature or density, where

perturbation theory is applicable. In order to get a full insight into the phase diagram,
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methods going beyond perturbation theory have to be applied.
Various non-perturbative approaches have been put forward, which allowed for much

insight in the nature of the strong interactions and the phase diagram. These approaches
comprise models mimicking QCD interactions, lattice gauge theory and functional meth-
ods. They all have advantages and shortcomings, therefore, a combined approach,
bundling the strengths of these methods seems promising to resolve the phase structure
of the QCD phase diagrams.

More precisely, QCD model theories allow for an easy computation of QCD processes
and have therefore been used extensively to investigate the structure of the QCD phase
diagram. An often used model is the Nambu-Jona-Lasinio (NJL) model, which is very
useful to study χSB and colour superconductivity, see e.g. [6]. In parts of this work, we
will also use a model derived from the NJL model.

If we stick to the temperature axis and neglect high densities, lattice QCD simula-
tions are possible and we can study thermodynamic properties and the chiral and de-
confinement phase transition [7]. Lattice QCD is the conventional method for ab-initio
calculations. The theory is formulated on a discrete and finite volume of space-time and
the path-integral, which then has a statistical interpretation, is performed numerically,
see e.g. [8]. Due to the notorious sign problem there is currently no reliable simulation
available that covers the parts of the phase diagram with non-vanishing density.

Functional methods, like Dyson-Schwinger equations or the functional renormalisation
group (fRG) do not suffer from this limitation. Moreover, the physical mechanisms,
that are at work become apparent. Due to the nature of functional methods, there is
no measure of the quality of the calculation, as in perturbation theory. Therefore, it is
necessary to have a good physical insight into the problem and, whenever possible, to
compare the result with limiting cases, that can be calculated with an exact method.
Functional methods and lattice QCD should be viewed as complementary approaches,
where the one approach has difficulties, the other usually does well. By combining the two
approaches, lattice QCD and functional methods, it is possible to overcome the individual
weaknesses and gain much insight into the physical problem at hand. We use the lattice
to measure the quality of our results.

Recently, there have been attempts to map out the phase diagram, using lattice, as
well as functional methods. On the lattice imaginary chemical potential techniques, cir-
cumventing the sign problem have been used, as well as Taylor expansions [9–17]. With
this techniques, it was possible, to extract the curvature of the chiral phase boundary.
Albeit within continuum approaches real chemical potential is not an issue, it is a huge
effort to compute the full phase diagram. Therefore, in [18] the curvature of the phase
boundary has been determined using an expansion of the observables in terms of the
chemical potential. The question whether the phase boundary of the confined and the
chirally symmetric phase coincide has not been answered conclusively. The general ex-
pectation is that they coincide, but recently it has also been conjectured that there might
be a new, so-called quarkyonic phase which is still confining by chirally symmetric [19].
A good theoretical description of the phase transitions is therefore indispensable for a
better understanding of the experimental data [20, 21].
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1 The QCD phase diagram

In this work we aim at a first principle description of QCD using functional renor-
malisation group (fRG) techniques, working in different gauges, Polyakov and Landau
gauge. By the use of different gauges, we can check the gauge invariance of the re-
sults. Polyakov gauge [22] is a physical gauge in the sense that we can relate the gauge
fields directly to observables, like the confinement order parameter, which we want to
compute in different settings. Landau gauge is technically easy accessible, due to a non-
renormalisation theorem analytically tractable in the low momentum regime. Therefore,
there exist many results with high accuracy, the agreement amongst these results is
remarkable. Non-perturbative methods being indispensable in the investigation of the
QCD phase diagram come in various fashions other than the fRG, that we choose as a
tool to investigate the non-pertubative physics. It has the advantage of having a simple
one-loop structure, there is no need for a regularisation and we can systematically check
and extend our truncations. It has been applied successfully in high-energy physics, as
well as in condensed matter physics or the physics of ultracold atoms. Furthermore, the
RG in general is a powerful tool to study physics, which has also been used for proves of
renormalisability.
This work is organised in the following form:
In chapter 2 we will provide the basics of QCD and functional methods. The relevant

quantities and concepts are introduced, while some of the derivations are deferred to later
chapters.
In chapter 3 we propose a new scheme to compute the deconfinement phase transition

within functional methods. We discuss the truncation and methods to solve the resulting
equations. Results are presented and compared to existing computations. The scheme is
at the current stage limited to the case of vanishing density.
Having discussed the deconfinement phase transition, we turn towards the full QCD

phase diagram in chapter 4, where we employ various approaches towards the full theory.
We first discuss the chiral phase transition and its implications for the phase diagram,
when we incorporate non-perturbative gluon dynamics. Thereafter, we compute the
effects dynamical quarks have on the deconfinement phase transition, that we described
in chapter 3. Finally, we explore the relation between χSB and confinement.
Throughout the work, we encounter many situations, in which an apt parameterisation

of the degrees of freedom is crucial to get physically correct results. In chapter 5 we want
to elaborate on getting the right parameterisation in situations, where the degrees of
freedom change when going from one physical regime to the other.
We conclude this work in chapter 6 with a summary of the results and possible further

investigations.
Part of this work has already been published, the results of Sec. 3.1 were published in

ref. [23]. A very condensed form of Sec. 4.4 has been published in [24].
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2 Introduction

“Omne initium difficile est”

2.1 QCD basics

Quantum Chromodynamics, the quantum field theory of strong interactions, is a non-
Abelian gauge theory. Therefore, we start with defining the field contents of the theory
and a discussion of its symmetries.

Field contents

The quark fields are spin-1/2 fermions transforming in the fundamental representation of
the gauge group SU(Nc), Nc being the number of colours. In this work we will focus on
Nc ∈ {2, 3}, where the case of two colours serves as a model theory to set up and asses
our fRG approach. Note also that 2-colour QCD on the lattice does not face the sign
problem and is therefore an ideal benchmarking environment for a discussion of finite
chemical potential in functional methods. We will see that the insight gained in 2-colour
QCD will have significant implications for the physical theory.

Quarks come in different flavours, the number of which isNf . The quark fields therefore
form Nf fundamental representations of SU(Nc) on a Cartesian product of Dirac spinors.
Flavour is an extension of the concept of isospin, where the latter was invented to explain
the mass degeneracy of the proton and the neutron.

The kinetic term of a fermion field, obeying renormalisibility, locality, gauge symmetry
and Poincaré invariance, is given by

ψ̄
(−i /D +m+ iµγ0

)
ψ (2.1)

where we introduced the mass matrix m, containing the current quark masses of the
quark fields. We used the standard notation ψ̄ = ψ†γ0, introduced the quark chemical
potential µ and the covariant derivative

Dµ = ∂µ + igAµ . (2.2)

We used the standard abbreviation /D = γµDµ with antihermitian γ-matrices, defined in
appendix A.1.
Aµ are the gluon fields taking values in the Lie algebra of SU(Nc) and are therefore

locally parametrised by Aµ = AaµT
a, with the T a being the generators of SU(Nc). Their

properties are detailed in appendix A.1.
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2 Introduction

The gluon fields Aaµ are non-Abelian gauge fields, transforming according to the adjoint
representation of the gauge group SU(Nc). The corresponding field strength tensor and
the covariant derivative in the adjoint representation are given by

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (2.3)

Dab
µ = ∂µδ

ab + gfabcAcµ. (2.4)

Here g is the (unrenormalised) coupling constant of the theory and fabc are the structure
constants of the gauge group SU(Nc).
Gauge invariance is an important concept in modern quantum field theory. It is one

of the building blocks of the standard model of particle physics. Additionally the dy-
namical breaking of gauge symmetry is a beautiful concept to explain the emergence of
superconductivity [25]. Under local gauge transformations fermion fields transform as

ψ → Uψ = exp(−iαa(x)T a)ψ, (2.5)

with αa(x) being arbitrary fields, which will of course be identified with the gauge fields.
In order for the kinetic term to be invariant under gauge transformations, the covariant
derivative has to transform as

Dµ → UDµU
−1. (2.6)

This can easily be achieved by requiring a certain transformation property of the gauge
field, this is

Aµ → UAµU
−1 − (∂µU)U−1. (2.7)

In continuum studies of QCD we have to ensure the gauge invariance of physical objects.
This is a challenge that we will come back to. In any case, we have collected all the
ingredients to formulate the theory.

Generating functional and gauge fixing

Investigating equilibrium thermodynamics goes along with working in Euclidean space-
time. The generating functional governing the dynamics of the quantum field theory of
quarks and gluons is given by

Z[J, η, η̄] = eW [J,η,η̄] =

∫
D[Aψ̄ψ] exp

{
−S[A,ψ, ψ̄] +

∫
d4x

(
AaµJ

a
µ + η̄ψ + ψ̄η

)}
with S[A,ψ, ψ̄] =

∫
d4xLQCD =

∫
d4x

(
ψ̄
(−i /D +m+ µγ0

)
ψ +

1

4
F a
µνF

a
µν

)
.

(2.8)

η̄ and η are Grassmann valued sources for the quark fields ψ and ψ̄ and Jaµ is the source
for the gauge field Aaµ. We elaborate on the role of the generating functional later on.
This generating functional is manifestly gauge invariant, i.e. unchanged under the

transformations in eq. (2.5) and eq. (2.7). In the limit of vanishing quark masses it is
also invariant under chiral symmetry, which we will discuss later. We tacitly assume
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2.1 QCD basics

the path integral to be meaningful, at least after a proper renormalisation has been
performed.

The path-integral definition of the generating functional is at the current stage not
complete since we integrate over physically equivalent gauge field configurations due to
gauge invariance. These configurations are said to lie in the same gauge orbit, meaning
that they can be connected simply by a gauge transformation. A gauge orbit is defined
by

[AU ] =
{

(UAU † + UdU †) : U ∈ SU(Nc)
}
. (2.9)

Integrating over each gauge orbit, we get an infinite constant - the volume of the gauge
group. We have to single out gauge orbits and restrict the path-integral to an integration
solely over one configuration of each orbit. The volume of the gauge group can be
absorbed in the normalisation.

Gauge invariance also hinders the definition of a (perturbative) gauge field propagator.
This is a consequence of the zero eigenmodes that reside in the quadratic part of the
gauge field Lagrangian, which therefore cannot be inverted. The troublesome modes are
the modes that are gauge equivalent to Aaµ = 0.
There are various ways to circumvent the problem. In this work we will resort to the

Faddeev-Popov procedure. The underlying idea is to separate the integration over the
gauge fields in an integration over different gauge orbits and an integration along those
orbits.

On the level of the path-integral this is achieved by inserting the identity

1 =

∫
Dα δ [G(Aα)]Det

[
δG(Aα)

δα

]
(2.10)

into the partition function, where Det[δG(Aα)/δα] is called Faddeev-Popov determinant
and G(Aα) is a function that encodes the gauge fixing condition. Aα is the gauge field
A, transformed through a finite gauge transformation:

(Aα)aµt
a = e−iα

ata
[
Abµt

b +
i

g
∂µ

]
eiα

ctc . (2.11)

Usually one writes the determinant as an integral over anticommuting scalar fields, called
Faddeev-Popov ghosts, c and c̄, and the gauge fixing term with the δ-distribution as a
Gaussian integral. Therefore, gauge fixing amounts to adding a ghost and a gauge-fixing
term to the Lagrangian. For covariant gauges these terms are:∫

d4x

(
(∂µA

a
µ)2

2ξ
− ic̄(−∂µDab

µ )c

)
, (2.12)

where we introduced the gauge fixing parameter ξ. Landau gauge corresponds to ξ = 0,
note that strictly speaking this is only defined of taking the limit ξ → 0. Feynman gauge
can be achieved by setting ξ = 1.
For the calculations in Polyakov gauge, we want to pursue another path and leave

the gauge fixing, as it stands. In Polyakov gauge, one can explicitly show that in a
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2 Introduction

static approximation the longitudinal gauge degrees of freedom and the Faddeev-Popov
determinant cancel. We explain our choice of gauge and its effect further when we discuss
the confinement-deconfinement phase transition.
The Faddeev-Popov procedure comes with its own problems, the most severe of which

is the Gribov problem [26]. It has been conjectured, that this is one of the reasons for the
discrepancy in the results for the infrared (IR) behaviour of the propagators in Landau
gauge between gauge fixed lattice QCD and functional methods.
On the lattice there is no need to fix a gauge, because one does not work with the

gauge fields themselves, but rather with the elements of the gauge group. In Polyakov
gauge, we also do not face the problem of Gribov copies and hence mention only the
existence of the Gribov problem.
The Lagrangian (2.8) is defined in terms of bare quantities, in order to get physically

meaningful result these have to be renormalised, to compensate for loop effects. The
correspondence between the bare Lagrangian (2.8) and its renormalised version including
counterterms is given by the following rescaling transformations

Aaµ →
√
Z3A

a
µ, c̄acb → Z̃3c̄

acb, Ψ̄Ψ→ Z2Ψ̄Ψ, (2.13)
g → Zgg, α→ Zαα, λ→ Zλλ, (2.14)

where six independent renormalisation constants Z3, Z̃3, Z2, Zg, Zα and Zλ have been
introduced.

Finite temperature QCD

As we are interested in the QCD phase diagram, we have to treat QCD in a thermody-
namical context. This is naturally formulated in imaginary time, i.e. Euclidean space,
which is why we formulated the generating functional eq. (2.8) in Euclidean space right
from the start, for reviews see e.g. [27, 28].
In order to obtain equilibrium observables at finite temperature T we use the Matsubara

or imaginary time formalism. This amounts to a compactification of time and entails
a genuine Euclidean formulation. Explicit Lorentz symmetry is lost and we have to
keep track of dependencies perpendicular and parallel to the heat bath. The action is
unchanged except for the x0 integration:∫

d4xLQCD →
∫ β

0

dτ

∫
d3xLQCD =:

∫
T

d4xLQCD, (2.15)

where β = 1/T . For vanishing temperature, the integral naturally reduces to the four
dimensional integral over uncompactified four-dimensional space-time. According to the
Kubo-Martin-Schwinger relation, gluons and ghosts obey periodic boundary conditions,
while quarks obey anti-periodic boundary conditions. This is reflected in the Matsubara
frequencies.
The Matsubara sum is a direct consequence of finite temperature. Working in Fourier

space, all quantities now depend on the three-momenta ~p and the Matsubara frequencies
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2.2 Symmetries

ωn individually. The Matsubara frequencies are

ωn =

{
2nπT bosons,

(2n+ 1)πT fermions.
(2.16)

2.2 Symmetries

Symmetries are always a fortunate circumstance in field theory as symmetries simplify
the analysis and quite often allow for obtaining exact or semi-exact results. The richer
the symmetry, the stronger the results obtained. Sometimes symmetries even determine
the full solution of the theory, c.f. the exact solution of N = 2 supersymmetric Yang-
Mills theory by Seiberg and Witten [29]. Certainly, in QCD symmetries do not allow for
a solution solely based on them, however, useful insight can be gained and will play an
important role in our analysis.

QCD exhibits many symmetries in nature most of these are broken in the ground state
of the theory, but can be restored under extreme conditions. In our investigations of
the phase diagram we will encounter phase transitions, where on one side of the phase
boundary, a particular symmetry is broken, whereas on the other side it is restored. We
will discuss the order parameter related to the symmetries in the next section.

Chiral Symmetry

Chiral symmetry is related to the quark fields and the spectrum of the Dirac operator.
For the discussion of the symmetries in the quark sector we can neglect the chemical
potential that we introduced earlier, as the chemical potential term in the Lagrangian is
chirally symmetric. The quark sector of the QCD Lagrangian eq. (2.8) is then

LM = ψ̄
(−i /D +m

)
ψ , (2.17)

where m is a diagonal matrix containing the masses of six different flavours of quarks,
generated in the electroweak sector of the standard model, see e.g. [30]. In the chiral
limit, i.e. m = 0 the Lagrangian is invariant under global vector and axial-vector SU(Nf )
transformations.

SU(Nf )V : ψ → exp(iΘa
V T

a)ψ and SU(Nf )A : ψ → exp(iγ5Θa
V T

a)ψ, (2.18)

where T a are the generators of SU(Nf ). The vector transformation is still a symmetry
if all flavours have degenerate masses. In physical QCD, chiral symmetry is a useful
concept for the two-flavour (up/down) case, as the current quark masses are very small.
Particularly at finite temperature, where the Matsubara mass in the Quark-Gluon-Plasma
phase is generically higher than these masses.
The observation that there are nearly degenerate SU(Nf ) multiplets in the hadron

spectrum reflects that SU(Nf )V is also an approximate symmetry of the QCD vacuum.
If the axial symmetry was also a symmetry of the vacuum, every hadron would possess

9
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a "chiral partner" having opposite parity. As these states are not observed, we con-
clude that chiral symmetry is spontaneously broken in the QCD vacuum. An observable,
which is not invariant under SU(Nf )A is the quark condensate 〈ψ̄ψ〉, often called chi-
ral condensate. A non-vanishing chiral condensate is an indication for chiral symmetry
breaking.
Chiral symmetry also plays an important role in our understanding of the low masses

of the pions in nature. This can be understood quite naturally by identifying the pions
as the Goldstone bosons of the broken chiral symmetry. The smallness of their mass
can be understood in terms of the small current quark masses of up- and down-quarks.
In the three flavour case the corresponding Goldstone bosons are in the pseudoscalar
meson octet. They all obey several low-energy theorems, providing a basis for chiral
perturbation theory χPT, for reviews see e.g. [31–34]). χPT is an expansion in quark
masses and momenta. It is a effective theory of the low-energy regime of QCD, where the
coupling strength αs of QCD is large. In this regime, the reformulation of the generating
functional of QCD in terms of pion degrees of freedom permits to set up a well-defined
perturbative expansion scheme. An ordinary perturbative expansion in the coupling
strength would be ill-defined.
In the chiral limit the quark fields can be separated into left- and right-handed Weyl-

spinors

ψR =
1 + γ5

2
ψ , ψL =

1− γ5

2
ψ. (2.19)

The Noether currents corresponding to chiral symmetry are

jµ = ψ̄γµψ , (2.20)
j5
µ = ψ̄γµγ5ψ , (2.21)
jaµ = ψ̄γµT

aψ , (2.22)
j5,a
µ = ψ̄γµγ5T

aψ , (2.23)

where T a = λa

2
denote the generators of SU(3) flavour transformations given by the Gell-

Mann matrices λa. On the classical level, these currents are conserved. However, due to
quantum corrections, the axial current, eq. (2.21) is no longer conserved.
In the presence of a non-vanishing mass matrix m and including the effects of the axial

anomaly we find the divergences of these currents to be

∂µjµ = 0 , (2.24)

∂µj
5
µ = 2iψ̄mγ5ψ − g2

16π2
εµνσρF a

µνF
a
σρ , (2.25)

∂µj
a
µ = ψ̄ [T a,m]ψ , (2.26)

∂µj
5,a
µ = ψ̄ {T a,m}ψ . (2.27)

Thus only one current, eq. (2.24), is conserved and it describes baryon number conser-
vation in strong interaction processes. The vector current, eq. (2.26), is conserved in the
case of identical quark masses and thus describes the approximate flavour symmetry in
the light quark sector of QCD.

10



2.2 Symmetries

The axial vector current, eq. (2.27), is not conserved if we have a non-vanishing quark
mass matrix in the Lagrangian of QCD. This is called explicit chiral symmetry breaking.
Since the current quark masses of the up and down quark are very small, we still expect
approximately degenerate parity partners of the lowest lying hadron spectra, if the current
masses were the only reason for broken chiral symmetry. However, such parity partners
are not observed in nature. Therefore, we must assume that there is another source for
chiral symmetry breaking. This notion is met by the phenomenon of dynamical chiral
symmetry breaking.
Within lattice simulations it is difficult to implement chiral symmetry However, there

is work going on in lattice gauge theory investigation the chiral phase transition.

Center Symmetry and the Deconfinement Phase Transition

Next we discuss one symmetry of the gauge sector which has an intimate relation to
confinement, center symmetry. Center symmetry is a symmetry of the gauge field action∫
d4xFµνFµν . In Yang-Mills theory (YM) it is an exact symmetry. SU(Nc) YM is ob-

tained from eq. (2.8) in the limitm→∞, which is the opposite of the chiral limit. Center
symmetry reflects the fact, that after gauge fixing we still have a residual symmetry of
the gauge fields, that is we can transform the fields with a center element of the gauge
group SU(Nc), this center is ZNc . It can be shown that broken center symmetry signals
confinement, whereas the center symmetric phase of YM is deconfined.

In the presence of dynamical quarks center symmetry is explicitely broken. However,
the order parameter related to center symmetry can still be used to infer information on
the confinement phase transition. We expect a smooth crossover from the low tempera-
ture into the high temperature phase.

Order Parameter

In QCD with static quarks, this means infinitely heavy quarks, the expectation value of
a static quark 〈ψ(~x)〉 serves as an order parameter for confinement. It is proportional
to the free energy Fq of such a state, 〈ψ(~x)〉 ∼ exp(−βFq), where β = 1/T is the
inverse temperature. In the confining phase the free energy of a static quark is infinite,
corresponding to the fact that it is impossible to put a single quark into the theory. Hence
in the confining phase at low temperature the expectation value vanishes, whereas in the
deconfined phase at high temperatures it is finite.

It is heuristically easily seen, that 〈ψ(~x)〉 relates to the free energy of a static quark.
Let us consider a simplified example, a static electron. By inspecting the Dirac equation
of the electron, it can be visualised, that the Polyakov loop, which we will introduce next
is the creation operator of a static quark and is closely tied to the free energy. The free
Dirac equation is

∂ψ

∂τ
= igA0ψ ⇒ ψ(~x, τ) = P exp

(
ig

∫ τ

0

dτ ′ A0(~x, τ ′)

)
ψ(~x, 0), (2.28)

11
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Figure 2.1: An electron winding around Euclidian time. In QCD the integration of the
gauge field along this orbit constitutes the Polyakov loop.

where P stands for path ordering. This electron then generates a current,

jµ(~x, τ) = δµ0

∫ β

0

dτδ(x− x(τ)) (2.29)

where x(τ) denotes the worldline of the electron. The situation is depicted in Fig. 2.1.
The free energy F of this electron is simply

exp (−βF ) = 〈P eig
R
d4x Aµ(x) jµ(x)〉 = 〈P eig

R β
0 dτ A0(~x,τ)〉. (2.30)

Returning with our focus to QCD, the Polyakov loop variable [22] is the creation
operator for a static quark,

L(~x) =
1

Nc

TrP(~x) , (2.31)

where the trace in eq. (2.31) is done in the fundamental representation, and the Polyakov
loop operator is a Wegner-Wilson loop in time direction,

P(~x) = P exp

(
ig

∫ β

0

dx0A0(x0, ~x)

)
. (2.32)

Here P stands for path ordering. We conclude with the insight gained from eq. (2.28),
that 〈ψ(~x)〉 ' 〈L(~x)〉. Thus the negative logarithm of the Polyakov loop expectation
value relates to the free energy of a static fundamental color source. Also, 〈L〉 measures
whether center symmetry is realised by the ensemble under consideration, see e.g. [35].
Therefore, we inspect the behaviour of the Polyakov loop under center transformations.

More specifically we consider gauge transformations U(x0, x) with

U(0, ~x)U−1(β, ~x) = Z, (2.33)

where Z is a center element. In SU(2) the center is Z2, whereas in physical QCD with
SU(3) it is Z3. Under such center transformations the Polyakov loop operator P(~x) in
eq. (2.32) is multiplied with a center element Z,

P(~x)→ Z P(~x) , (2.34)
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and so does the Polyakov loop, L(~x)→ Z L(~x). As the expectation value of the Polyakov
loop 〈L〉, is a sum over all configurations, i.e. over all center transformed configura-
tions, the center-symmetric confining (disordered) ground state ensures 〈L〉 = 0, whereas
deconfinement 〈L〉 6= 0 signals the ordered phase and center-symmetry breaking,

T < Tc : 〈L(~x)〉 = 0 , Fq =∞ ,

T > Tc : 〈L(~x)〉 6= 0 , Fq <∞ . (2.35)

The expectation value of the Polyakov loop can be deduced from the equations of motion
of its effective potential VL[〈L〉]. We shall argue that the computation of the latter
greatly simplifies within an appropriate choice of gauge. Indeed, gauge fixing is nothing
but the choice of a specific parameterisation of the path integral, and a conveniently
chosen parameterisation can simplify the task of computing physical observables.

Note that the product of two Polyakov loops can be viewed as a closed Wegner-Wilson
loop, for a pedagogical introduction see e.g. [8].

Polyakov gauge

The Polyakov loop is a complicated object which can in general not be computed analyt-
ically. However, with an appropriately chosen gauge we may simplify this computation
significantly.

In the present case our choice of gauge is guided by the demand of a particularly
simple representation of the Polyakov loop variable eq. (2.31). A gauge ensuring time-
independent A0 leads to both, a trivial integration in eq. (2.32) and renders the path
ordering irrelevant. Having done this, one can still rotate the Polyakov loop operator
P(~x), eq. (2.32), into the Cartan subgroup.

For example in SU(2), Polyakov gauge is implemented by the gauge fixing conditions

∂0Tr σ3A0 = 0 , Tr (σ1 ± iσ2)A0 = 0 , (2.36)

where the σi are the Pauli matrices. However, the gauge fixing eq. (2.36) is not complete.
It is unchanged under time-independent gauge transformations in the Cartan sub-group.
These remaining gauge degrees of freedom are completely fixed by the following condi-
tions,

∂1

∫
dx0 Tr σ3A1 = 0 , ∂2

∫
dx0dx1 Tr σ3A2 = 0 , ∂3

∫
dx0dx1dx2 Tr σ3A3 = 0 . (2.37)

The gauge fixings eq. (2.37) are integral conditions and are the weaker the more integrals
are involved. Basically they eliminate the corresponding zero modes. This can be seen
directly upon putting the theory into a box with periodic boundary conditions, i.e. on a
four torus T 4, see e.g. [36, 37].

In Polyakov gauge, the evaluation of the Polyakov loop simplifies drastically. As A0 is
in the Cartan and independent of time, the path ordering is implemented automatically.
The integration over imaginary time is trivial and for SU(2) we get:

L(~x) =
1

2
Tr eig

R β
0 A3

0(~x)σ3

=
1

2
Tr eiβgA

3
0σ

3

= cos

(
1

2
gβA3

0

)
. (2.38)
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An analogous computation can be done for any gauge group with higher rank Nc. This
makes the advantages of Polyakov gauge apparent: it directly relates the zero component
of the gauge field to the order parameter of confinement. As we detail below we are now
able to set up simple truncation schemes based on the properties of the Polyakov loop.
Another advantageous feature of Polyakov gauge is, that we can compute the Faddeev-

Popov determinant explicitely. The gauge fixing conditions eq. (2.36),eq. (2.37) lead to
the following Faddeev-Popov determinant

∆FP [A] = (2T )2

[∏
x

sin2

(
gA3

0(~x)

2T

)]
. (2.39)

The computation of which is detailed in App. B.1. The integration over the longitudinal
gauge fields precisely cancels the Faddeev-Popov determinant in the static approximation
∂iA

c
0 = 0, see App. B.1.

2.3 Functional Methods

Functional methods are in general methods for solving a quantum field theory that are
based on functionals derived from the path integral. From these functionals, we can derive
the quantum equations of motion for observables as well as important thermodynamic
properties like the pressure or the free energy.
We already introduced the generating functional of QCD, as we shall see, it encodes all

the physical information of the theory. In general it is impossible to solve the functional
integral. We either have to apply some expansion scheme like perturbation theory, resort
to a numerical simulation or work with models deduced from this functional.
We want to pursue another approach, by solving the path integral successively by

integrating out momentum modes inspired by Kadanoff’s block-spin transformation [38].
This idea has been extended by Wegner and Wilson to contiuum quantum field theory [39,
40].
First we will discuss the properties of the functional that the formalism is based upon,

before we turn towards the flow equation with which will compute it.

Effective Action

Since symmetries are important it is highly desirable to have a formulation of the dy-
namics of the fields that respects these symmetries and allows to access them straightfor-
wardly. In this work we choose the effective action as the central quantity on which we
build our description. The effective action Γ governs the dynamics of the field expectation
values in a quantum field theory. It has many appealing properties, which we discuss in
the following. For simplicity let us consider only a real scalar field ϕ in d dimensions.
With minor modifications the following discussion also holds for other fields like fermions
or gauge fields. All n-point correlation functions are encoded in the generating functional
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Z[J ],

Z[J ] ≡ eW [J ] =

∫
Dϕ e−S[ϕ]+

R
Jϕ, (2.40)

where we abbreviated the source term
∫
Jϕ =

∫
ddx J(x)ϕ(x).

As long as the integration measure and the source term is invariant under the sym-
metries of the action, these symmetries are carried over into the generating functional.
When we switch to the effective action, these symmetries are preserved.

All n-point functions are obtained by functional differentiation with respect to the
source and setting the source to zero at the end of the computation

〈ϕ(x1) . . . ϕ(xn)〉 =
1

Z[0]

(
δnZ[J ]

δJ(x1) . . . δJ(xn)

)
J=0

. (2.41)

It is apparent, that we have a solution of the theory, if we can compute the generating
functional. That is, all physical information of the theory is stored in it. The correlation
functions derived from the generating functional contain also disconnected pieces of the
correlations functions, which do not contribute to the S-Matrix. Therefore, we want to
discuss a functional, in which the physical information is stored more efficiently.

In eq. (2.40), we introduced the generating functional of connected correlation functions
W [J ] = lnZ[J ]. In this functional, no disconnected contributions to the correlation func-
tions are left. This functional is more suitable for computations, however, the correlation
functions generated by this functional still contain contributions, that are disconnected
upon cutting one internal line. We can build up all correlation functions from contribu-
tions that are not disconnected if we cut one internal line. These contributions are said
to be one-particle irreducible (1PI) and the functional that generates these correlation
functions is the effective action Γ. One can also define functionals that generate correla-
tion functions that are not disconnected if we cut more than one internal line. This leads
to 2PI techniques or even NPI with N > 2 [41].
The effective action Γ is obtained upon performing a Legendre transform ofW [J ] w.r.t.

to J
Γ[φ] = sup

J

(∫
Jφ−W [J ]

)
. (2.42)

For any given φ, one J ≡ Jsup = J [φ] is singled out for which
∫
Jφ −W [J ] approaches

its supremum. Note that this definition of Γ automatically guarantees convexity.
We want to elucidate the meaning of the variable φ. Therefore, we consider the deriva-

tive of the effective action at its supremum, J = Jsup, assuming that Γ[φ] is differentiable,
and obtain

0
!

=
δ

δJ

(∫
Jφ−W [J ]

)
⇒ φ =

δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉J . (2.43)

This implies that φ corresponds to the expectation value of ϕ in the presence of the source
J . The meaning of Γ becomes clear by studying its derivative at J = Jsup

δΓ[φ]

δφ(x)
= −

∫
y

δW [J ]

δJ(y)

δJ(y)

δφ(x)
+

∫
y

δJ(y)

δφ(x)
φ(y) + J(x)

(2.43)
= J(x). (2.44)
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This is the quantum equation of motion by which the effective action Γ[φ] governs the
dynamics of the field expectation value. It includes the effects of all quantum fluctuations.
From the definition of the generating functional we can straightforwardly derive an

equation for the effective action:

e−Γ[φ] =

∫
Λ

Dϕ exp

(
−S[φ+ ϕ] +

∫
δΓ[φ]

δφ
ϕ

)
. (2.45)

Here, we have performed a shift of the integration variable, ϕ → ϕ + φ. We observe
that the effective action is determined by a nonlinear first-order functional differential
equation, the structure of which is itself a result of a functional integral. An exact
determination of Γ[φ] and thus an exact solution has so far been found only for rare,
special cases.
As a first example of a functional technique, approximate solutions can be constructed

from a vertex expansion of Γ[φ],

Γ[φ] =
∞∑
n=0

1

n!

∫
ddx1 . . . d

dxn Γ(n)(x1, . . . , xn)φ(x1) . . . φ(xn), (2.46)

where the expansion coefficients Γ(n) correspond to the one-particle irreducible (1PI)
proper vertices. Inserting eq. (2.46) into eq. (2.45) and comparing the coefficients of the
field monomials results in an infinite tower of coupled integro-differential equations for the
coefficients Γ(n): the Dyson-Schwinger equations. This functional method of constructing
approximate solutions to the theory via truncated Dyson-Schwinger equations, i.e., via a
finite truncation of the series (2.46) has its own merits and advantages; their application
to gauge theories is well developed, see e.g. [42, 43].

Flow equation

A versatile approach to the computation of Γ is based on RG concepts [44]. Whereas a
computation via eq. (2.45) or via Dyson-Schwinger equations corresponds to integrating-
out all fluctuations at once, we can implement Wilson’s idea of integrating out modes
momentum shell by momentum shell.
In order to compute Γ, we introduce a scale-dependent action Γk, called the effective

average action, with scale parameter k. We want Γk to have special properties which
allow for a computation of the effective action Γ. These properties are that for k → Λ,
Γk corresponds to the bare action we want to quantise and that the full quantum action
Γ is obtained for k → 0,

Γk→Λ ' Sbare, Γk→0 = Γ. (2.47)

We can construct such an action from the generating functional. Therefore, we define
the IR regulated functional Zk, note that we work in momentum space, where the ideas
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of Wegner and Wilson are straightforwardly implemented:

eWk[J ] ≡ Zk[J ] := exp

(
−∆Sk

[
δ

δJ

])
Z[J ]

=

∫
Λ

Dϕ e−S[ϕ]−∆Sk[ϕ]+
R
Jϕ, (2.48)

where we introduced the regulator term

∆Sk[ϕ] =
1

2

∫
ddq

(2π)D
ϕ(−q)Rk(q)ϕ(q), (2.49)

which is quadratic in ϕ. We can view it as a modification of the kinetic term and therefore
as a modification of the propagator.

Since we want to achieve a suppression of infrared modes in the modified theory, the
regulator function Rk(q) should satisfy the condition

lim
q2/k2→0

Rk(q) > 0, (2.50)

enforcing a regularisation in the infrared. For instance, if Rk ∼ k2 for q2 � k2, the
regulator acts like a mass term m2 ∼ k2 for the IR modes.
Furthermore, in order to implement the conditions in eq. (2.47), we demand

lim
k2/q2→0

Rk(q) = 0. (2.51)

This implies that the regulator vanishes for k → 0. Then it is not difficult to see that
we automatically recover the standard generating functional as well as the full effective
action in the limit k → 0: Zk→0[J ] = Z[J ] and therefore Γk→0 = Γ.

The third condition relates to the requirement that we recover the bare action in the
limit k → Λ, i.e. the theory is unchanged in the ultraviolet. The condition is

lim
k2→Λ→∞

Rk(q)→∞. (2.52)

In this limit the functional integral is dominated by the stationary point of the action.
Then it is appropriate to use the saddle-point approximation in which we approximate
the effective action by the bare action, Γk→Λ → S+const.. A sketch of a typical regulator
that satisfies these three requirements is shown in Fig. 2.2.

Note that in the literature the regulator is frequently written as

Rk(p
2) = p2 r(p2/k2), (2.53)

with r(y) being a dimensionless regulator shape function with a dimensionless momentum
argument. The conditions we posed for the regulator trivially translate into those for the
regulator shape function.
Imposing such a cut-off function for a study of scalar field theories is in general unprob-

lematic. However, for gauge theories the presence of a cut-off breaks gauge symmetry.
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p
2k

2

k
2

R
k

(d/dt) R
k

Figure 2.2: Sketch of a regulator function Rk(p
2) (lower curve) and its derivative ∂tRk(p

2)
(upper curve). The regulator regularises all modes with p2 . k2 Its derivative
enforces the Wilsonian idea of integrating out fluctuations within a momen-
tum shell near p2 ' k2.

This is a consequence of condition (2.50), which requires the cut-off function to behave
like a mass term for small momenta. Mass terms for gauge fields break gauge symmetry,
it is therefore manifest that the cut-off term breaks gauge symmetry. While at first this
seems to be a severe problem of the fRG, it is not an issue at all. Since in a path-integral
approach, we have to fix a gauge anyway, already the the gauge-fixing breaks gauge
invariance manifestly. Gauge invariance is however not lost, it is merely hidden in the
formulation of the theory. Gauge symmetry is manifest in the Ward-Takahashi identities,
as long as these are fulfilled, gauge invariance is not broken.

The cut-off function is therefore just another source of gauge-symmetry breaking and
it modifies the Ward-Takahashi identities. In order to recover gauge invariance in the
fRG setting, we now have to deal with modified Ward-Takahashi identities [45–47].

In our studies of Polyakov gauge QCD we do not face such complications, since in this
gauge we can reduce the theory effectively to a scalar theory theory before introducing
the cut-off. We will see this when we derive the flow for QCD. At this point let us proceed
with the derivation of the flow equation.

Now that we know that the scale dependent effective action Γk exhibits the correct
limits, let us study its behaviour in between the two limits. To that end we derive a first
order differential equation which controls the scale dependence of the effective action.
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We define the following abbreviations

t = ln
k

Λ
, ∂t = k

d

dk
. (2.54)

Keeping the source J fixed, i.e. independent of k, the scale derivative of the scale depen-
dent generating functional Wk[J ] is

∂tWk[J ] = −1

2

∫
Dϕϕ(−q) ∂tRk(q)ϕ(q)e−S−∆S+

R
Jϕ

= −1

2

∫
ddq

(2π)d
∂tRk(q)Gk(q) + ∂t∆Sk[φ]. (2.55)

In the last line, we have defined the connected propagator

Gk(p) =

(
δ2Wk

δJδJ

)
(p) = 〈ϕ(−p)ϕ(p)〉 − 〈ϕ(−p)〉〈ϕ(p)〉. (2.56)

Now, we are able to define the scale dependent effective action Γk by a slightly modified
Legendre transform, which takes care of the modifications introduced by adding the cut-
off:

Γk[φ] = sup
J

(∫
Jφ−Wk[J ]

)
−∆Sk[φ]. (2.57)

Since we later want to study Γk as a functional of a k-independent field φ, it is clear
from eq. (2.57) that the source J ≡ Jsup = J [φ] for which the supremum is approached
is necessarily k dependent. As before, we get at J = Jsup:

φ(x) = 〈ϕ(x)〉J =
δWk[J ]

δJ(x)
. (2.58)

The quantum equation of motion receives a regulator modification,

J(x) =
δΓk[φ]

δφ(x)
+
(
Rkφ

)
(x). (2.59)

In order to proceed, we have to apply a field derivative on this equation. Note that for
case of fermionic Grassmann-valued fields, the field derivative should act on eq. (2.59)
from the right.

The result is:
δJ(x)

δφ(y)
=

δ2Γk[φ]

δφ(x)δφ(y)
+Rk(x, y). (2.60)

Also from eq. (2.58), we obtain

δφ(y)

δJ(x′)
=

δ2Wk[J ]

δJ(x′)δJ(y)
≡ Gk(y − x′). (2.61)
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We combine the two equations to get the important identity

δ(x− x′) =
δJ(x)

δJ(x′)
=

∫
ddy

δJ(x)

δφ(y)

δφ(y)

δJ(x′)

=

∫
ddy (Γ

(2)
k [φ] +Rk)(x, y)Gk(y − x′), (2.62)

which can in operator notation be written in the compact form

1 = (Γ
(2)
k +Rk)Gk, (2.63)

where we have introduced the short-hand notation for the field derivative acting on the
scale dependent effective action

Γ
(n)
k [φ] =

δnΓk[φ]

δφ . . . δφ
. (2.64)

Collecting all ingredients, we can finally derive the flow equation for Γk for fixed φ and
at J = Jsup [44], recently named “Wetterich’s equation”:

Γ̇k[φ] := ∂tΓk[φ] = −∂tWk[J ]|φ +

∫
(∂tJ)φ− ∂t∆Sk[φ] = −∂tWk[J ]|J − ∂t∆Sk[φ]

(2.55)
=

1

2

∫
ddq

(2π)D
∂tRk(q)Gk(q)

(2.63)
=

1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ] +Rk

)−1
]
. (2.65)

This equation is the exact evolution equation for the scale dependent effective action.
Given initial conditions and a regulator function, we can, in principal, compute the flow
of the scale dependent effective action. This is visualised in Fig. 2.3, where the initial
conditions are fixed at the UV scale Λ by the classical action Scl. Then we integrate the
equation from the UV scale down to the infrared.
This flow equation is a nonlinear functional differential equation, that involves the

second functional derivative of the scale dependent effective action. Despite its simple
one-loop structure, it is important that the loop is not a perturbative loop, rather it con-
tains the full propagator, thereby summing up arbitrarily high loop orders by integrating
the flow equation [48].
A commonly used method to solve the flow equation eq. (2.65), is the vertex expansion

technique. The strategy for studying a quantum field theory with the fRG using this
technique is the following: We write down the most general Ansatz for the effective
action, including all operators (n-point functions) compatible with the symmetries of the
theory. From eq. (2.65) we obtain the flow of all n-point functions. Already from the
structure of the flow equation we see, that the flow of an n-point function is obtained from
information of higher correlation functions, i.e. (n+1)- and (n+2)-point functions. This
implicates that we obtain an infinite tower of coupled flow equations, possibly carrying
a complicated momentum structure.
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2.3 Functional Methods

Figure 2.3: The idea of the fRG, we start with the classical action Scl at a high scale Λ
and evolve the action downward towards the full effective action Γ

To keep the problem manageable, we truncate the effective action by reducing the
complexity of the momentum structure of n-point functions to a simple momentum de-
pendence or even treat them as contact terms. Furthermore we choose a maximum
number Nmax of n-point functions that we want to take into account, i.e. we neglects
all n-point functions with n > Nmax right from the onset of our calculation. That is,
because we cannot compute the whole tower at once and also do not aim at this in our
investigations. The beauty of the approach is that we are able to see the underlying
physics mechanism at work. Therefore, the ultimate goal is not to find and solve a huge
system of correlation functions, but to find the subset of correlation functions that covers
the essential physics at hand and study their behaviour. We will see in the course of
this work that quite a simple truncation can capture the physics and leads to beautiful
results.

Put another way, as it is impossible to study the flow of an effective action containing
all operators which are allowed by the symmetries, we have to restrict ourselves to a
subspace of operators which we expect to be relevant for the physical problem under
consideration. This step is obviously the most difficult one and requires much physical
insight into the problem in order to truncate towards the correct subspace of operators.
Note that truncating the effective action and thereby the tower of flow equations is not
an expansion in a small parameter as in perturbation theory. The tacit assumption is
that the neglected operators have only a small back reaction onto the operators contained
in the truncation, which has to be checked.

Once we have chosen a certain truncation scheme we need to assess how reliable the
results and thereby the assumptions we made are. A clear signal that the truncation is
unreliable is an unstable RG flow. The prime example here can be seen in the flow of four-
fermion interactions, which shows a divergence at a finite scale k = kcr. In this example
there is a physical reason for the instability, as it indicates the onset of chiral symmetry
breaking which we will see in sec. 4.1. Upon adding additional bosonic operators and
shovelling parts of the flow into these, the instability vanishes and we obtain meaningful
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− −∂tΓ = 1
2

Figure 2.4: Flow equation for QCD including gluons, quarks and ghosts. Regulator in-
sertions are represented by crossed circles. Note that the propagators in the
loops are full propagators!

results [49–51].
In order to check a chosen truncation, we can extend it by adding more operators and

survey whether the results obtained from the larger truncation are in agreement with the
results from the smaller truncation. If the results change drastically, we have to recon-
sider and extend the truncation, particularly with the insight gained from extending the
truncation. There is, however, no guarantee that we have included all relevant opera-
tors in our truncation, even if the results are insensitive to the added operators. This
is because different physical observables might be sensitive to different sets of operators,
therefore, it is important to be aware of the observables, we want to compute.
Varying the cut-off function Rk and checking if the results depend on the choice of it is

another possibility to verify the reliability of the truncation. It is based on the fact that
physical observables should be independent of the regularisation scheme, which is given
by the cut-off function. Therefore, physical observables should not depend on the choice
of Rk, if they do, this is a signal that the truncation is insufficient.
The quintessence is that an approximate solution of the flow equation can describe non-

perturbative physics reliably, if we include the operators corresponding to the relevant
degrees of freedom in our truncation of the effective action. Sometimes these degrees of
freedom will change, making the analysis more difficult or even meaningless. It is then
necessary to introduce scale-dependent fields. It is obvious that the derivation of the flow
equation has to be modified. Therefore, we get a different flow equation. We will come
back to this problem in chapter 5.
The derivation of the flow equation we gave extends naturally to theories with more

complicated field content. For completeness, we have given the schematical picture of the
flow equation for QCD in Fig. 2.4. Note the minus sign in front of the quark and ghost
loop, it is a consequence of the fermionic nature of these fields.
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“Dum spiro spero”
In this chapter, we propose a new approach towards the confinement-deconfinement phase
transition using the functional RG in Polyakov gauge. Polyakov gauge provides us with a
direct access to the physical observable, the Polyakov loop, which is an order parameter
for confinement. Confinement is an infrared property of QCD and therefore, it is obvious
that this phase transition cannot be described in a perturbative setting. On the lattice,
the Polyakov loop is an observable that is computed easily and it is well understood.
In the continuum, writing down the expression for the Polyakov loop is not difficult,
however, there have for a long time been no successful attempts to compute the phase
transition from first principle, i.e. without imposing additional assumptions onto the
theory. Recently there have been attempts to relate the Polyakov loop to the chiral
condensate, giving interesting insight in the interplay between confinement and chiral
symmetry breaking. We will discuss such a relation in the course of this work.

The behaviour of the Polyakov loop in the high-temperature phase was first discussed
by Weiss [52], and exhibited deconfinement as expected. Some time later, attempts have
been made in perturbative calculations to see confining properties. These were found with
the help of additional parameters, particularly depending on the regularisation [53, 54]. In
the course of these investigations it became obvious that within a perturbative approach
confinement could not be described from first principle.

The fRG, being a non-perturbative method allows us to access the infrared region of the
theory and is therefore a promising tool to investigate the confinement phase transition.
Polyakov gauge allows direct access to the order parameter and we can employ controlled
approximations of the theory in the fRG. We can relate the order parameter to the
effective potential of the gluons. We shall argue, that the Polyakov loop has a massive
propagator and therefore, the effective action can be kept rather simple. The physics is
essentially captured by the effective potential.

First studies of the Polyakov loop using the fRG [55] in an approximation guided by
this idea did not show confinement. With the insight we gain from our analysis, this is
not surprising, because the confining properties of the theory were artificially removed
by an inappropriate choice of boundary conditions.

Recently, the fRG was used to compute the Polyakov loop potential with the aid of
propagators in Landau gauge Yang-Mills theory [56]. It was possible to compute the
effective potential of the gluons from the propagators employing background field meth-
ods. In this approach confinement can be related directly to the anomalous dimension
of the propagators. The condition for confinement is compatible with results for the
propagators found using functional methods, as well as with propagators computed on
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the lattice. Note that this approach is quite different from the one we will develop in this
work, as it rests on the non-trivial momentum structure of propagators in Landau gauge.

3.1 Confinement Phase Transition in SU(2)

While there are two Cartan directions for SU(3) there is only one Cartan direction for
SU(2). In general there are Nc − 1 Cartan directions. The number of Cartan directions
defines the number of variables we use in our calculations.
In order to set up our scheme, we start with the technically less involved color gauge

group SU(2). This obviously simplifies things drastically, later on, we will also see, that
the results from SU(2) are an important input for the calculations of the confinement
phase transition in SU(3).
This section is organised as follows, first we set the theoretical framework that allows for

the easiest access to the confinement phase transition, then we set up the flow equations.
We discuss their solutions and eventually the results emerging from the flow.

3.1.1 Theoretical Setup

In order to set up our flow equations, we first show that the expectation value of the
Polyakov loop 〈L[A0]〉 and Polyakov loop of the expecatition value of the gauge field
L[〈A0〉] are equivalent order parameters for the deconfinement phase transition.

Reformulation of the Order Parameter

We showed, that Polyakov gauge entails a incredibly simple relation between A0 and L,

L(~x) = cos
1

2
gβA0(~x) . (3.1)

Note that this simple relation is not valid on the level of expectation values of L and
A0, in SU(2) we have 〈L〉 6= cos 1

2
gβ〈A0〉. However, in the present work we consider an

approach that gives direct access to the effective potential Veff [〈A0〉] for the gauge field,
as distinguished to those for the Polyakov loop, Ueff [〈L〉] 1.
Here, we argue that L[〈A0〉] also serves as an order parameter: To that end we show

that the order parameter 〈L[A0]〉 is bounded from above by L[〈A0〉]. It follows that
L[〈A0〉] is non-vanishing in the center-broken phase. Furthermore we show that in the
center-symmetric phase with vanishing order parameter, 〈L[A0]〉 = 0, the observable
L[〈A0〉] vanishes. For the sake of simplicity we restrict the explicit proof to SU(2), but it
straightforwardly extends to general gauge groups SU(Nc). First we note that eq. (3.1)
can be used for expressing the expectation value of A0 in terms of L,

1

2
gβ〈A0〉 = 〈arccosL〉 . (3.2)

1A reformulation in terms of the Polyakov loop variable along the lines outlined in [41] is in progress.
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We emphasise that the RHS of eq. (3.2) defines an observable as it is the expectation value
of an gauge invariant object. This observable happens to agree with 〈A0〉 in Polyakov
gauge. It follows from the Jensen inequality that the expectation value of the Polyakov
loop, the order parameter for confinement, is bounded from above by L[〈A0〉], see [56]

L[〈A0〉] ≥ 〈L[A0]〉 . (3.3)

for gauge fields gβ〈A0〉/2 ∈ [0, π/2]. Note that it is sufficient to consider the above
interval due to periodicity and center symmetry of the potential. This means we restrict
the Polyakov loop expectation value to 〈L〉 ≥ 0. Negative values for 〈L〉 are then obtained
by center transformations, L → ±L. Eq. (3.3) is easily proven for SU(2) from eq. (3.1)
as cos(x) is concave for x ∈ [0, π/2]. Thus, for 〈L〉 > 0 it necessarily follows that
gβ〈A0〉/2 < π/2.
In turn we can show that gβ〈A0〉/2 = π/2, if the Polyakov loop variable 〈L[A0]〉

vanishes. This entails that L[〈A0〉] = 0. To that end we expand L about its mean value
〈L〉, that is L = 〈L〉+ δL. Inserting this expansion into eq. (3.2) we arrive at

1

2
gβ〈A0〉 = arccos〈L〉 − 1√

1− 〈L〉2 〈δL〉+O
(〈δL2〉) . (3.4)

In the center-symmetric phase we have 〈L〉 = 0, c.f. eq. (2.35). Under center transforma-
tions L transforms according to (2.34), L → Z L with Z = ±1, and hence δL → Z δL.
It follows that 〈δL2n+1〉 = Z〈δL2n+1〉 = 0, and all odd powers in eq. (3.4) vanish. The
even powers vanish since the arccos function is an odd function and hence has vanishing
even Taylor coefficients. Thus, in the center-symmetric phase we have

1

2
gβ〈A0〉 = arccos〈L〉 =

π

2
. (3.5)

In summary we have shown

T < Tc : L[〈A0〉] = 0 ⇔ 1
2
gβ〈A0(~x)〉 = π

2
,

T > Tc : L[〈A0〉] 6= 0 ⇔ 1
2
gβ〈A0(~x)〉 < π

2
. (3.6)

We conclude that 〈A0〉 in Polyakov gauge serves as an order parameter for the confinement-
deconfinement (order-disorder) phase transition, as does L[〈A0〉]. Thus, we only have to
compute the effective potential Veff [〈A0〉] in order to extract the critical temperature, and
e.g. critical exponents. This potential is more easily accessed than that for the Polyakov
loop. It is here were the specific gauge comes to our aid as it allows the direct physical in-
terpretation of a component of the gauge field. This property has been already exploited
in the literature, where it has been shown that 〈A0〉 in Polyakov gauge is sensitive to
topological defects related to the confinement mechanism [36, 37, 57, 58].

Weiss Potential

We start with a discussion of the Weiss potential [52] which is an essential building block
for our description of the deconfinement phase transition. The derivations done here
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are also used for the derivation of the flow equations. Starting point is the standard
Yang-Mills action, which simplifies upon imposing Polyakov gauge. We already showed
the result for the Fadeev-Popov determinant, eq. (2.39), its derivation is deferred to
App. B.1. In Polyakov gauge it cancels precisely the longitudinal components of the
spatial gluon fields Ai. This can be seen upon comparing the contributions to the generat-
ing functional from the Fadeev-Popov determinant and from the longitudinal components
of the gauge fields [52].
In App. B.2 we show the steps leading from the gauge fixed Yang-Mills action with

longitudinal gluons already integrated out to the action that can be used to compute the
effective potential of the Polyakov loop. The action is

Seff [A] ' −1

2
β

∫
d3xA0

~∂ 2A0 − 1

2

∫
T

ddxAa⊥,i

[
(D2

0)ab + ~∂2δab
]
Aa⊥,i +O(A3

⊥,i) (3.7)

with Dab
0 = ∂0δ

ab+A3
0gf

a3b and transversal spatial gauge fields, ∂iA⊥,i = 0. The notation∫
T
indicates the summation over Matsubara frequencies when going to momentum space,

in real space this means
∫
T
ddx =

∫
d3x

∫ T
0
dx0.

The generating functional of Yang-Mills theory in Polyakov gauge then reads

Z[J ] =

∫
dA0 dA⊥,i exp

{
−Seff [A] +

∫
d3x J0A0 +

∫
T

ddx J⊥,iA⊥,i

}
. (3.8)

In eq. (3.8) we have normalised the temporal component J0 of the current with a factor
β. The classical action Seff is inherently non-local as is contains one-loop terms, the
Faddeev-Popov determinant as well as the integration over the longitudinal gauge fields.
The perturbative calculation for SU(2) Yang-Mills theory was done by N. Weiss. He

showed that the integration and the Matsubara frequency summation can be done ana-
lytically, where he used the special features of Polyakov gauge which we just described.
The resulting potential is

VW (ϕ) = −(ϕ̃− π)2/(6β4) + (ϕ̃− π)4/(12π2β4) , (3.9)

with the dimensionless variables ϕ = gβA0, and ϕ̃ = ϕ mod 2π. The potential is shown
in Fig. 3.1 for one period. It is obvious that it is deconfining, as the minima are located
at 〈gβA0〉 ∈ {0, 2πn}, n ∈ Z. Therefore, the Polyakov loop expectation value is zero.
Extending the calculation done by Weiss to gauge groups larger than SU(2) is not

difficult. The corresponding Weiss potential in four dimensions is given by

VW,SU(N) = β−4 2

π2

N2
c−1∑
l=1

∞∑
n=1

cos(nνl)

n4
, (3.10)

where the νl denote the eigenvalues of the hermitian color matrix ϕnT
n = gβAn0T

n.
The matrices T n are the generators of SU(N). Note that in Polyakov gauge ϕn has
components only in the Cartan directions.
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Figure 3.1: The Weiss potential for SU(2)

For SU(3) the potential can be written as a sum of one dimensional potentials, the
Weiss potentials of SU(2):

VW,SU(3)(ϕ3, ϕ8) = VW (ϕ3) + VW (
ϕ3 +

√
3ϕ8

2
) + VW (

ϕ3 −
√

3ϕ8

2
), (3.11)

ϕ3 and ϕ8 are the Cartan directions. The resulting potential is depicted in Fig. 3.2. The
periodicity in ϕ3 and ϕ8 direction is obvious. There are however more symmetries of

Figure 3.2: The Weiss potential for SU(3). The maxima of the potential are located at
combinations of field values, where the Polyakov loop vanishes.
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the potential, which we will discuss in more detail when we deal with the flow of SU(3).
There we will also introduce the Weyl chambers, which are indicated by the white lines
in the potential.

Truncation

Guided by the insight we gained from the calculation of the Weiss potential, we treat
spatial and temporal gauge fields independently. We shall argue that in Polyakov gauge
a rather simple approximation to the full effective action already suffices to describe
the confinement-deconfinement phase transition and in particular to estimate the critical
temperature.
Therefore let us analyse the expected propagation behaviour of the Polyakov loop. The

expectation value 〈L(~x)〉, or L[〈A0〉], is used to determine the phase transition temper-
ature Tc as well as the critical exponents. The temperature-dependence of the Polyakov
loop two-point function relates to the string tension. In the confining phase, for T < Tc,
and large separations |~x− ~y| → ∞, the two-point function falls off like

lim
|~x−~y|→∞

〈L(~x)L†(~y)〉c ' exp {−β σ|~x− ~y|} . (3.12)

Here, 〈· · · 〉c stands for the connected part of the related correlation function, i.e.

〈L(~x)L†(~y)〉c = 〈L(~x)L†(~y)〉 − 〈L(~x)〉〈L(~y)〉. (3.13)

In turn, its Fourier transform shows the momentum dependence

lim
|p|→0
〈L(0)L†(p)〉c ' lim

|p|→0

1

π2

βσ

((βσ)2 + p2)2
=

1

π2

1

(βσ)3
. (3.14)

From this we conclude that the Polyakov loop variable has a massive propagator. This
directly relates to a massive propagator of A0 in Polyakov gauge. Therefore, we can use
a truncation with a simple momentum structure, similar to the local potential approxi-
mation frequently used when investigating scalar theories with the fRG. We compute the
flow of the effective action Γ[A0, ~A⊥] in the following truncation

Γk[A0, ~A⊥] = β

∫
d3x

(
−Z0

2
A0
~∂ 2A0 + Vk[A0]

)
−1

2

∫
T

d4xZi ~A
a
⊥

[
(D2

0)ab + ~∂ 2δab
]
~Aa⊥ , (3.15)

with k-dependent wave function renormalisations Z0, Zi. The effective action eq. (3.15) re-
lates to the order parameter 〈L(~x)〉 as well as its two point correlation function 〈L(~x)L†(~y)〉
via the effective potential Veff [A0] = Vk[A0] as explained above. The expectation value
〈L(~x)〉, or L[〈A0〉], is used to determine the phase transition temperature Tc as well as
critical exponents. The temperature-dependence of the Polyakov loop two-point function
relates to the string tension. As explained at the beginning of this chapter, the Polyakov
loop has a massive propagator in the confining phase.
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In our study, we will set Zi = 1 right from the start, as we assume the backreactions of
the temporal on the spatial gluons to be a subleading effect for confinement. The backre-
action modifies the potential generated by the spatial gluons. This modification changes
the effective potential generated by the temporal gluons only through the denominator
of the flow equation. Therefore, the effect on the confining properties of the theory is
small. In an extended truncation, we would have to loosen this restriction.

Next we discuss the relation between Z0 and the running gauge coupling. In order to
do so, consider the four-gluon vertex, which is present in the original YM action. We
have

Γ
(2,2)
k =

δ4Γk
δA2

0δA
2
i

= (4παs)Z0Zi = gkZ0. (3.16)

The strong coupling 4παs has to be an RG invariant as the wave function renormalisations
carry the RG running. Note that the strong coupling (4παs) is not a constant, it still
has a momentum dependence. In our truncation we identify the momentum running of
the strong coupling with its fRG running. We have

αs = αs(p
2 = k2

phys). (3.17)

Consequently we get the running coupling of YM theory from

gk =
g

Z0

= 4παs(p
2 = k2

phys) (3.18)

This also entails that the anomalous dimension η0 is linked to the running coupling by

η0 = −∂t logαs(k
2
phys) . (3.19)

In order to proceed and solve the flow equation, we need to specify a regulator function.
As we treat temporal and spatial gluons separately, we also choose a regulator that
treats the two components in a non-uniform way. The approximation scheme is fully
set by specifying the regulators R0,k and R⊥,k. Naively one would identify the cut-off
parameter k in the regulators with the physical cut-off scale kphys. For general regulators
this is not possible and one deals with two distinct physical cut-off scales, k0,phys and
k⊥,phys related to R0,k and R⊥,k respectively, for a detailed discussion see [41]. However,
within the approximation eq. (3.15) it is crucial to have a unique effective cut-off scale
kphys = k0,phys = k⊥,phys, as different physical cut-off scales k0,phys 6= k⊥,phys necessarily
introduce a momentum transfer into the flow which carries part of the physics. This
momentum transfer is only fully captured with a non-local approximation to the effective
action. In turn, a local approximation such as eq. (3.15) requires k0,phys = k⊥,phys. In
other words, a local approximation works best if the momentum transfer in the flow is
minimised. This requires a matching of the cut-off scales. More details about such a
scale matching and its connection to optimisation [59–61] can be found in [41]. Note
in this context that in the present case we also have to deal with the subtlety that
A0 only depends on spatial coordinates whereas ~A⊥ is space-time dependent. However,
the requirement of minimal momentum transfer in the flow is a simple criterion which
is technically accessible. The regulator can be written as one single regulator RA,µν
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which is a block-diagonal matrix in field space. More specifically we restrict ourselves to
regulators [62]

RA,00 = R0,k = Z0Ropt,k(~p
2) , RA,ij = ZiΠ⊥,ij(~p)Ropt,k⊥(~p2) , (3.20)

where we introduced the transversal projector defined by

Π⊥,ij = δij − pipj
~p2

. (3.21)

we use the following regulator shape function, called the 3D optimised regulator [59–61]

Ropt,k(~p
2) = (k2 − ~p2)θ(k2 − ~p2) . (3.22)

It has advantageous properties, particularly when working at finite temperature. Some
calculations simplify drastically compared with other calculations for a different choice
of regulator.
The regulators are optimised in the sense, that the flow has the shortest trajectory

towards the final result.
The detailed scale-matching argument is deferred to App. B.3 and results in a rela-

tion k⊥ = k⊥(k) depicted in Fig. 3.3. It is left to determine the effective cut-off scale
kphys. This cut-off scale can be determined from the numerical comparison of the flows
of appropriate observables: one computes the flow with the three-dimensional regulator
Ropt,k⊥(~p2) in eq. (3.20), as well as with the four-dimensional regulator Ropt,kphys

(p2). The
respective physical scales are then identified, i.e. k⊥,phys(k⊥) = kphys. The results for this
matching procedure are depicted in Fig. 3.3 and the details of the calculation are found
in Appendix B.3. Another estimate comes from the flow related to the three-dimensional
A0-fluctuations where we can directly identity kphys = k. We use the above choices as
limiting cases for an estimate of the systematic error in our computation. Our explicit
results are obtained for the best choice that works with all physical constraints.
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Figure 3.3: k̂⊥/k̂ as function of k̂ and k̂phys(k̂) from the comparison of flows with three-
dimensional regulators and four-dimensional regulators.
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3.1 Confinement Phase Transition in SU(2)

3.1.2 RG Flow Equation

The flow of the cut-off dependent effective action Γk is governed by Wetterich’s flow
equation [44, 63–68] for Yang-Mills theory [41, 69, 70] in Polyakov gauge,

∂tΓk =
β

2

∫
d3p

(2π)3

(
1

Γ
(2)
k +RA

)
00

∂tR0,k

+
T

2

∑
n∈Z

∫
d3p

(2π)3

(
1

Γ
(2)
k +RA

)
ii

∂tRopt,k⊥ , (3.23)

where t is the RG time t = ln(k/Λ) and Λ is some reference scale.
Eq. (3.23) together with an initial effective action at some initial ultraviolet scale

k = ΛUV provides a definition of the full effective action at vanishing scale k = 0 via the
integrated flow. For the solution of eq. (3.23) we have to resort to approximations to the
full effective action. In gauge theories such an approximation also requires the control of
gauge invariance, see e.g. [41].

We are now in the position to integrate the flow equation eq. (3.23). To begin with, we
can immediately integrate out the spatial gauge fields ~A⊥ for Zi = 1, that is the second
line in eq. (3.23). This part of the flow only carries an explicit dependence on the cut-off
k, details of the calculation can be found in App. B.2. It results in a non-trivial effective
potential V⊥,k[A0] that approaches the Weiss potential [52] in the limit k/T → 0, and
falls off like exp(−βk⊥(k)) cos(gβA0) in the UV limit k/T → ∞, see Fig. 3.4. In terms
of the effective action, after the integration over ~A⊥, we are led to an effective action of
A0,

Γk[A0] = β

∫
d3x

(
Z0

2
(~∂A0)2 + ∆Vk[A0] + V⊥,k[A0]

)
. (3.24)

Eq. (3.24) follows from eq. (3.15) with Γk[A0] = Γk[A0, ~A⊥ = 0], and

Vk[A0] = ∆Vk[A0] + V⊥,k[A0] . (3.25)

The full effective potential is given by Veff [A0] = ∆Vk=0[A0]+V⊥,k=0[A0]. We are left with
the task to determine ∆Vk, which is the part of the effective potential induced by A0-
fluctuations. In Polyakov gauge, these fluctuations carry the confining properties of the
Polyakov loop variable, whereas the spatial fluctuations generate a deconfining effective
potential for A0, see Appendix B.2. We emphasise that this structure is not present for
spatial confinement which is necessarily also driven by the spatial fluctuations, and solely
depends on these fluctuations in the high temperature limit. Work in this direction is in
progress.

Here we proceed with the integration of the flow for the potential ∆Vk. To that end
we reformulate eq. (3.23) as a flow for ∆Vk with the external input V⊥,k, see eq. (B.18).
The flow equation for ∆Vk reads

β ∂t∆V k =
1

2

∫
d3p

(2π)3

∂tR0,k

Z0~p 2 + ∂2
A0

(∆Vk + V⊥,k) +R0,k

. (3.26)
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3 QCD in Polyakov gauge

With the specific regulator Rk in eq. (3.20) we can perform the momentum integration
analytically. We also introduce the scalar field ϕ = gβA0 and arrive at

β∂k∆Vk =
2

3(2π)2

(1 + η0/5)k2

1 +
g2kβ

2

k2 ∂2
ϕ(V⊥,k + ∆Vk)

, (3.27)

where the coupling g2
k has to run with the effective cut-off scale kphys as explained above.

Eq. (3.27) is an equation for the dimensionless effective potential V̂ = β4Vk in terms
of V̂⊥ = β4V⊥,k and ∆̂V = β4∆Vk. The infrared RG-scale k naturally turns into the
modified RG-scale k̂ = kβ. Thus all scales are measured in temperature units. The flow
equation is then of the form

∂k̂∆V̂ =
2

3(2π)2

(1 + η0/5)k̂2

1 +
g2k
k̂2
∂2
ϕ(V̂⊥ + ∆V̂ )

. (3.28)

The potential V̂ and hence ∆̂V has a field-independent contribution which is related to
the pressure. For the present purpose it is irrelevant and we can conveniently normalise
the flow eq. (3.28) such that it vanishes at fields where ∂2

ϕ(V̂⊥+∆V̂ ) = 0. This is achieved
by subtracting 2(1 + η0/5) k̂2/(3(2π)2) in eq. (3.28) and we are left with

∂k̂∆V̂ = − 1

6π2

(
1 +

η0

5

) g2
k ∂

2
ϕ (V̂⊥ + ∆V̂ )

1 +
g2k
k̂2
∂2
ϕ (V̂⊥ + ∆V̂ )

, (3.29)

where we have kept the notation ∂k̂∆V̂ for ∂k̂∆V̂ − 2(1 + η0/5) k̂2/(3(2π)2). In this form
it is evident, that the flow vanishes for fields where ∂2

ϕ(V̂⊥ + ∆V̂ ) = 0, i.e. once a region
of the potential becomes convex, this part is frozen, unless the external input V̂⊥ triggers
the flow again.
We close this section with a discussion of the qualitative features of eq. (3.29). It

resembles the flow equation of a real scalar field theory, and due to V⊥, the flow is
initialised in the broken phase. It relies on two external inputs, V⊥ and αs.
The first input, V̂⊥, is computed in a perturbative approximation to the spatial gluon

sector, and its computation is deferred to App. B.2. It is shown in Fig. 3.4 for various
values of the RG time k̂, and approaches the perturbative Weiss potential [52] for van-
ishing cut-off k̂ = 0. We have argued that within Polyakov gauge this approximation
should capture the qualitative feature of its contribution to the Polyakov loop potential.
We emphasise again that this is not so for the question of spatial confinement, and the
related potential of the spatial Wilson loops.
The second input is αs = g2

k/(4π), the running gauge coupling. It runs with the physical
cut-off scale kphys derived in Appendix B.3, αs = αs(k

2
phys). In the present work we model

αs with a temperature-dependent coupling that runs into a three-dimensional fixed point
α∗,3dkphys/T for low cut-off scales kphys/T � 1. This choice carries some uncertainty as
the running coupling in Yang-Mills theory is not universal beyond two loop order. Here
we have chosen the Landau gauge couplings αLandau,4d(k

2
phys) at cut-off scales kphys/T � 1,
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Figure 3.4: V̂⊥ for different values of k̂

Figure 3.5: αs for temperatures T = 0, 150, 300, 600 MeV
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see [42, 71–75]. The corresponding three-dimensional fixed point α∗,3d = 1.12 is obtained
from [74, 75]. A specific choice for such a running coupling is displayed in Fig. 3.5.

The normalisation of the momentum scale has been done by the comparison of continuum
Landau gauge propagators to their lattice analogues. Fixing the lattice string tension
to
√
σ = 440 MeV, we are led to the above momentum scales. For a comparison with

Landau gauge results obtained in [56] we have also computed the temperature-dependence
of the Polyakov loop by using αLandau,4d for all cut-off scales. Indeed, this over-estimates
the strength of αs, as can be seen from Fig. 3.5, However, qualitatively this does not
make a difference: for scales far below the temperature scale, k̂ → 0, the flow switches
off for fields ϕ with ∂2

ϕ(V̂⊥ + ∆V̂ ) ≥ 0, i.e. for the convex part of the potential. This
happens both for g2

k → const, and for g2
k(k̂

2 → 0) ∼ k̂. In other words, the minimum
of the potential freezes out in this regime. For the non-convex part of the potential,
∂2
ϕ(V̂⊥ + ∆V̂ ) < 0, the flow does not tend to zero but simply flattens the potential, thus

arranging for convexity of the effective potential Veff = Vk=0. The uncertainty in g2
k is

taken into account by evaluating the limiting cases. Together with the error estimate on
the physical cut-off scale kphys in App. B.3 this leads to an estimate for the systematic
error of the results presented below. This error includes the error related to our specific
choice of the running coupling. For example, a viable alternative choice to Fig. 3.5 is
provided by the background field coupling derived in [76] which is covered by the above
error estimate.

Integration

The numerical solution of eq. (3.29) is done on a suitably chosen grid or parameterisation
of ∆V̂ and its derivatives. As V̂ , V̂⊥ and ∆V̂ are periodic, one is tempted to solve
eq. (3.29) in a Fourier decomposition, see e.g. [55]. However, as can be seen already at
the example of the perturbative Weiss potential VW = V⊥,0, eq. (3.9), this periodicity
is deceiving. The Weiss potential is a polynomial of order four in ϕ̃ = ϕ mod 2π, its
periodicity comes from the periodic ϕ̃(ϕ) [52]. Consequently the third derivative ∂3

ϕVW
has a discontinuity at ϕ = 2πn with n ∈ Z.
Moreover, ∂3

ϕVW [ϕ→ 0+] = −∂3
ϕVW [ϕ→ 0−] 6= 0. A periodic expansion of VW , e.g. in

trigonometric functions cannot capture this property at finite order. This does not only
destabilise the parameterisation, but also fails to capture important physics: the flow of
the position of the minima is proportional to ∂3

ϕV̂ . This follows from ∂tV̂ [ϕmin,k] = 0.
Expanding this identity leads to

∂tϕmin,k = − ∂tV̂
′[ϕ]

V̂ ′′[ϕ]

∣∣∣∣∣
ϕ=ϕmin,k

, (3.30)

where V̂ ′ = ∂ϕV̂ and V̂ ′′ = ∂2
ϕV̂ . The flow ∂tV̂

′[ϕ] is proportional to ∂3
ϕV̂ , which e.g. can

be seen by taking the ϕ-derivative of eq. (3.23). Since a Fourier-decomposition enforces
∂3
ϕV̂ = 0 at any finite order, the minimum does not flow in such an approximation, and

the theory always remains in the deconfined phase. Note also that the resulting effective
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3.1 Confinement Phase Transition in SU(2)

potential at k̂ = 0 for smooth periodic potentials and flows vanishes identically as it has
to be convex. In the present case this is not so, as the potential is rather polynomial (in
ϕ̃) and convexity does not enforce a vanishing effective potential.

In turn, a standard polynomial expansion about the minimum ρmin,k already captures
the flow towards the confining phase. Here, however, we use a grid evaluation of the flow
of ∆V̂ with ϕ ∈ [0 , 2π], taking special care of the boundary conditions at ϕ = 0, 2π: we
have extrapolated the second derivative to ϕ = 0 and ϕ = 2π. It suffices to use a first
order extrapolation, and we have explicitly checked that the resulting flow is insensitive
to the precision of the extrapolation.

An alternative procedure is an expansion in terms of Chebyshev polynomials which
also works quite well and provides a very fast and efficient way of integrating the flow.
A comparison between the results obtained on a grid and with Chebyshev polynomials
shows that both parameterisations agree nicely and the corresponding flows deviate from
each other only for small values of k. This is due to an expected failure of the standard
Chebyshev-expansion for those small k̂ where the position of the minimum is almost
settled and the potential flattens out in the regions that are not convex. This behaviour
is better resolved with a grid than with polynomials because polynomials have difficulties
resolving the transition from a flat to a non-flat region. On a grid implementation we see
the potential becoming convex as k̂ → 0.

3.1.3 Results

In Fig. 3.6 we show the full effective potential for temperatures ranging from T = 500
MeV in the deconfined phase to T = 250 MeV in the confined phase. The expectation
value 〈ϕ〉 in the center-broken deconfined phase is given by the transition point between
the decreasing part of the potential for small ϕ and the flat region in the middle of the
ϕ-interval. It can also be explicitly computed from eq. (3.30). In the center-symmetric
confined phase it is simply given by the minimum at ϕ = π.

The temperature-dependence of the order parameter L[〈A0〉] = cos(〈ϕ/2〉) is shown
in Fig. 3.7, and we observe a second order phase transition from the confined to the
deconfined phase at a critical temperature

Tc = 305+40
−55 MeV, Tc/

√
σ = 0.69+.04

−.12 , (3.31)

with the string tension
√
σ = 440 MeV. The corresponding value on the lattice is

Tc/
√
σ = .709, [77–80] and agrees within the errors with our result. The estimate of

the systematic error in eq. (3.31) is dominated by the uncertainty of the determination
in the identification of kphys, see App. B.3.
We would also like to comment on the difference of the temperature-dependence of

L[〈A0〉] depicted in Fig. 3.7 and that of the Polyakov loop 〈L[A0]〉. It has been shown in
sec. 3.1.1 that both vanish in the confined phase and both are non-zero in the deconfined
phase. However, the Jensen inequality eq. (3.3) entails that the present observable L[〈A0〉]
takes bigger values than the Polyakov loop 〈L[A0]〉 which is in agreement with lattice
results.
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3 QCD in Polyakov gauge

The critical physics should not depend on this issue. Here we compute the critical
exponent ν, a quantity well-studied in the O(1) model which is in the same universality
class as SU(2) Yang-Mills theory. Moreover, in Polyakov gauge the effective action Γ[A0]
after integrating-out the spatial gauge field is close to that of an O(1)-model. Studies
using the fRG in local potential approximation with an optimised cut-off for the O(1)
model yield ν = 0.65, see [81]. The critical exponent in SU(2) YM is related to the
screening mass of temporal gauge field by

m2(T ) ∝ |T − Tc|2ν , (3.32)

wherem2 = V ′′(ϕmin,0)/2. We have computed the temperature-dependence of the screen-
ing mass in the confined phase near the phase transition, and extracted the critical ex-
ponent ν from a linear fit to the data. This is shown in Fig. 3.8. The fit yields the
anticipated value of

ν = 0.65+0.02
−0.01 , (3.33)

for the critical exponent ν. The critical exponent β agrees within the errors with the
Ising exponent β = 0.33.
Finally we would like to compare the results obtained here with the results of [56].

There, the effective potential Veff [A0] was computed from the flow [71, 82] of Landau
gauge propagators [72–75, 83–85] within a background field approach in Landau-DeWitt
gauge. In this gauge the confining properties of the theory are encoded in the non-
trivial momentum dependence of the gluon and ghost propagators. Indeed, in [56] the
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Figure 3.6: Full effective potential V̂eff , normalised to 0 at ϕ = 0

36



3.1 Confinement Phase Transition in SU(2)

1 1.05 1.1 1.15 1.2
T / Tc

0

0.2

0.4

0.6

0.8

1

L

zero temperature coupling

finite temperature coupling

Figure 3.7: Temperature dependence of the Polyakov loop L[〈A0〉] = cos(〈ϕ〉/2) in SU(2)
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Figure 3.9: Comparison of L[〈A0〉] computed in Polyakov gauge and in Landau-DeWitt
gauge from [56].

effective potential Vk was computed solely from this momentum dependence but its back-
reaction in the form of its second derivative V ′′ has not been taken into account. In
SU(2) Landau gauge Yang-Mills this is expected to be a good approximation with the
exception of temperatures close to the phase transition, see [56]. In the vicinity of the
phase transition, the back-reaction of the effective potential is particularly important for
the critical physics and the value of the critical temperature [86].
For the comparison we have computed the present flow with the zero-temperature

running coupling in Fig. 3.5 for all temperatures. This mimics the approximation used in
[56] which implicitly relies on the zero-temperature running coupling αs. We also remark
that the quantity L[〈A0〉] is gauge-dependent in general, and only the critical temperature
derived from it is not. However, in Landau-DeWitt gauge with background fields A0 in
Polyakov gauge temporal fluctuations about this background resemble those in Polyakov
gauge. For this reason we might expect a rather quantitative agreement for the quantity
L[〈A0〉] in both approaches. The results for the temperature dependence of the Polyakov
loop are depicted in Fig. 3.9. The coincidence between the two gauges is very remarkable,
particularly since the mechanisms driving confinement are quite different in the different
approaches, as are the approximations used in both cases. This provides further support
for the results from these studies. It also sustains the argument concerning the lack of
gauge dependence made above. The quantitative deviations in the vicinity of the phase
transition are due to the truncation used in [56] that cannot encode the correct critical
physics yet, as has been already discussed there.
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3.2 Confinement Phase Transition Formulated in L[~x]

We mentioned before that there are physical situations where the appropriate degrees of
freedom change with scale. In chapter 5 we will introduce an implementation of this in the
fRG for a scalar O(2) model. In our truncation, QCD can be treated like a scalar theory,
it is therefore worthwhile to investigate how a change of degrees of freedom influences
the deconfinement phase transition. In the previous section, we showed that we can use
〈L[A0(~x)]〉 as an order parameter instead of the original order parameter 〈L(~x)〉. Doing
so, we do not directly take the Polyakov loop fluctuations into account. The effect of
taking these fluctuations into account is a phase transition that is less sharp. This can
already be seen from the Jensen inequality, eq. (3.3) and has also been observed on the
lattice. Finally there are also indications from the flow, as it is more deconfining above
the critical temperature compared to the flow formulated in terms of the gauge field
variable. A formulation of the theory in L also allows for a direct comparisson of the
results with lattice data, because on the lattice one naturally computes 〈L〉.
Now we want to formulate the flow equation in terms of L(~x), thereby computing the

order parameter 〈L(~x)〉.

3.2.1 Flow Equation

The natural variable to formulate the flow in, is the Polyakov loop which is in SU(2)
related to the gauge field A0 via

L(~x) = cos

(
gβA3

0(~x)

2

)
= cos

(
ϕ(~x)

2

)
(3.34)

The task at hand is to reformulate the theory in terms of the Polyakov loop variable (~x)
and then write the flow in terms of this variable. Let us first rewrite the action, giving
us guidance to the changes, that we will have to introduce in the flow equations.

The parametrisation of the action is now given by

ΓL,k[A0] =
ZL
2

(∂µA
3
0(L))2 + Vk[A0(L)] =

4ZL
2(1− L2)

(∂µL)2 1

g2β2
+ Vk[ϕ(L)], (3.35)

where we used A3
0[L(~x)] = 2

gβ
arccos(L(~x)) and ∂µarccos(L(~x)) = −2√

1−L2∂µL(~x). We
renamed Z0 into ZL.
It is now obvious how to define the cut-off. The spatial gluons are not affected by the

reformulation of the theory. We use the same cut-off shapes as in the previous section,
only the pre factors are changed. Then the cut-off is given by

RA,LL = RL,k = ZL
2

g2β2
Ropt,k(~p

2) , RA,ij = ZiΠ⊥,ij(~p)Ropt,k⊥(~p2) , (3.36)

where again [59–61]

Ropt,k(~p
2) = (k2 − ~p2)θ(k2 − ~p2) . (3.37)
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The flow of the cut-off dependent effective action ΓL,k is governed by Wetterich’s equa-
tion [44, 63–68]. For Yang-Mills theory [41, 69, 70] in Polyakov gauge, using the Polyakov
loop variable L, it reads

∂tΓL,k =

∫
d3p

(2π)3

(
β

2

(
1

Γ
(2)
L,k +RA

)
LL

∂tRL,k +
T

2

∑
n∈Z

(
1

Γ
(2)
L,k +RA

)
ii

∂tRopt,k

)
.(3.38)

It is very similar to eq. (3.23), except for the fact, that we traded the zero component
of the gauge field A0 for the Polyakov loop variable L by means of the relation L(~x) =
cos(gβA3

0(~x)/2). Effectively this will lead to modifications of the flow equation, which we
discuss next.
As before we need to specify boundary conditions at some scale ΛUV and solve the

differential equation. At vanishing cut-off scale, k = 0, we recover the full effective
action.
In the previous section definition of the boundary conditions was trivial, as we could

start at some high scale, were QCD becomes perturbative and the effective action is
nothing but the classical effective action. Here, we have to be more careful, because
simple perturbative boundary conditions can lead to (unphysical) divergences in the
flow. We will come back to this issue later.
What we can do similarly to our previous computation is integrating out the spatial

gluons ~A⊥. The computation is exactly the same as in the previous section. Therefore,
we do not show it here explicitly. Since we have integrated out the spatial gluons, the
effective potential consists out of two contributions VL,k[L] = ∆VL,k[L]+V⊥,k[A0(L)]. The
latter contribution was introduced in the previous section and discussed there, a plot of
it is in Fig. 3.4. It is the deconfining part of the effective potential, which triggers during
the flow the confining part of the potential.
To compute the flow, we need the second derivative of the effective action. To com-

pute it, note that we evaluate the flow equation at vanishing momenta, i.e. spatially
homogeneus fields. Therefore, only the two field derivatives acting on the (∂L)2 terms
contribute to the flow of the effective action, since other contributions to Γ

(2)
k vanish

(∂µL|p→0 = 0). We therefore get:

Γ
(2)
L,k = ZL

4

(1− L2)g2β2
~p2 + ∂2

LVk[ϕ(L)], (3.39)

We end up with the following flow equation, where we already integrated out the spatial
gluons and absorbed their contribution into the effective potential as demonstrated in the
last section. The resulting flow equation is given by (the step function of the regulator
has already been used to specify the integration bounds)

∂t∆V =
1

2

4π

(2π)3

∫ k

0

dpp2

4
g2β2ZL(2k2 + ηL(k2 − ~p2)

ZL
4

g2β2

(
1

1−L2 − 1
)
~p2 + ZL

4
g2β2k2 + ∂2

LVk[ϕ(L)]
, (3.40)

where ηL = ŻL/ZL. Again, we have the coupling g2
k running with the effective cut-off

scale kphys.
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3.2 Confinement Phase Transition Formulated in L[~x]

We perform the substitution x = ~p2β2 and rescale the flow paramater k̂ = βk. Fur-
thermore, we rescale the potential with temperature, V = β4Vk The flow equations can
then be expressed in terms of dimensionless quantities, details of the calculation can be
found in App. B.4.

k̂ ∂k̂V =
1

(2π)2

∫ k̂2

0

dx

√
x(k̂2 + ηA(k̂2 − x))

L2

1−L2x+ k̂2 + g2

4
∂2
LV [ϕ(L)]

. (3.41)

We are left now with the computation of the second derivative of the potential ∂2
LV [ϕ(L)].

This is easily done, yielding

∂2
LV [ϕ(L)] = −2

cos(ϕ/2)

sin3(ϕ/2)
V ′ +

4

sin2(ϕ/2)
V ′′ =

−2L

(1− L2)3/2
V ′ +

4

1− L2
V ′′, (3.42)

where V ′ = ∂V [ϕ]/∂ϕ. The momentum integration can be done analytically, however,
there is a potential problem stemming from the points L = ±1, these are the points that
relate to ϕ ∈ {0, 2π}. Thus, we have to be carefull about the boundaries of the potential
again. Since the potential can be non-convex during the flow. It is easily seen from
eq. (3.42), that near L = ±1 the flow at the boundaries of the potential may become
very large. Especially at the begin of the flow, the potential is largely non-convex and
therefore, these large contributions can lead to unphysical divergencies during the flow.
Perturbatively we can see, that there are cancellations among the two contribution.

One way out, is to use the results for the potential obtained from the flow formulated in
terms of the variable ϕ. At a specified point in the flow, we then switch to the formulation
in L. The result of this procedure is unfortunately quite sensitive to the precise switching
procedure, e.g. where the transition from one into the other formulation occurs.

3.2.2 Discussion

In summary, we see, that we devised a transformation of variables, that allows for a non-
convex potential. This in turn invalidates the mean-field argument, that L ∝ exp(iβA0)
We cannot simply substitute the variable A0 in the previous calculation for the new

variable L. This means, that VW [L] 6= Veff[L], where Veff[L] is the effective potential, that
we would have to use to get correct results.

To resolve this problem we need a transformation of variables, that takes this special
feature into account. This could be of the form

L(A0)→
{

L for gβ〈A0〉 → π
A0 for gβ〈A0〉 → 0

(3.43)
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3.3 Confinement Phase Transition for SU(3)

Having shown that we can describe the deconfinement phase transition within our trun-
cation using the fRG. Next we want to tackle the real physical problem of SU(3). SU(3)
is not too different from SU(2), the mechanism driving confinement, i.e. the effective
potential, is the same. SU(2) YM in Polyakov gauge was particularly simple because
the Cartan contained only one component. As we will see, in SU(3), the Cartan now
contains two components and therefore, the effective potential is 2-dimensional, which is
technically more involved than the one-dimensional one for SU(2). As we have seen in
SU(2) the boundaries of the region we compute the potential on are very important. In
SU(3) we have more boundaries and have to handle them carefully.

Gauge Fixing

For the case of SU(3), Polyakov gauge is implemented by the gauge fixing conditions

∂0TrλcA0 = 0 , Trλa6=cA0 = 0 , (3.44)

where the λc are the Gell-Mann matrices that lie in the Cartan subalgebra, i.e. c ∈ {3, 8}.
λa6=c denotes the remaining Gell-Mann matrices. However, the gauge fixing eq. (3.44) is
not complete. It is unchanged under time-independent gauge transformations in the
Cartan sub-group. This residual gauge freedom is fixed by integral conditions, which for
brevity we will not display here.

3.3.1 Flow Equation

Our truncation for SU(3) Yang-Mills theory in Polyakov gauge is very similar to the
truncation for SU(2), except that the gauge field A0 now has a more complex structure.
It is given by A0 = A3

0T
3 + A8

0T
8. The steps that led us in SU(2) from eq. (3.23) to the

flow equation for the effective potential eq. (3.29) are virtually unchanged apart from the
fact that we have a more complex tensor structure. We would like to sketch the most
important changes. Due to the higher dimensionality of the Cartan in SU(3) the second
derivative of the effective action will have an additional tensor structure in the Cartan
components. This can already be seen by looking at the effective action that we want to
use (compare with eq. (3.24))

Γk[A0] = β

∫
d3x

(
Z0Tr(~∂A0)2 + ∆Vk[A0] + V⊥,k[A0]

)
= β

∫
d3x

(
Z0

2
((~∂A3

0)2 + (~∂A8
0)2) + ∆Vk[A

3
0, A

8
0] + V⊥,k[A

3
0, A

8
0]

)
. (3.45)

The full effective potential is given by Veff [A3
0, A

8
0] = ∆Vk=0[A3

0, A
8
0] + V⊥,k=0[A3

0, A
8
0]. We

are left with the task to determine ∆Vk, which is the part of the effective potential induced
by A0-fluctuations. In Polyakov gauge these fluctuations carry the confining properties
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3.3 Confinement Phase Transition for SU(3)

of the Polyakov loop variable, whereas the spatial fluctuations generate a deconfining
effective potential for A0, see App. B.2.
The regulator for SU(3) is unchanged in comparison with SU(2), except for zero com-

ponent of the gauge field,

RA,00 = δabR0,k = Z0δabRopt,k(~p
2) , RA,ij = ZiΠ⊥,ij(~p)Ropt,k⊥(~p2) , (3.46)

where a, b run only in the Cartan, i.e. a, b ∈ {3, 8} and Ropt,k is the optimised regulator,
already used in eq. (3.22).

The flow equation is the same as before except for an additional tensor structure ,
indicated by the superscript:

∂tΓk =

∫
d3p

(2π)3

(
β

2

(
1

Γ
(2)
k +RA

)aa

00

∂tR0,k +
T

2

∑
n∈Z

(
1

Γ
(2)
k +RA

)
ii

∂tRopt,k⊥

)
. (3.47)

The temporal component of the propagator, (Γ(2) +R)−1
00 , is now matrix-valued in Cartan

space. The inversion of the propagator is not difficult, though. The flow of the spatial
gluons generates the Weiss potential for SU(3).
At the example of the second derivative of the effective action, we exemplify the new

structure appearing in the propagator. The second derivative of the effective action, Γ(2),
is now matrix valued. Explicitly the second derivative reads, note that we omitted any
field dependence other than the dependence on A0,

Γ
(2)
k [A0] =

(
δ2

δA2
3

δ2

δA3δA8

δ2

δA3δA8

δ2

δA2
8

)
Γ[A0] (3.48)

Analogous expressions appear for the other components. With the specified regulator
Rk in eq. (3.46) we can perform the momentum integration analytically. Introducing the
scalar field ϕ3/8 = gβA

3/8
0 , we find (details are deferred to App. B.5)

β∂k∆Vk =
2β2k4

3(2π)2

(
1 +

η0

5

)
2k2 + g2

kβ
2
(
(∂2
ϕ3

+ ∂2
ϕ8

)Vk
)

(k2 + g2
kβ

2∂2
ϕ3
Vk)(k2 + g2

kβ
2∂2
ϕ8
Vk)− (g2

kβ
2∂ϕ3∂ϕ8Vk)

2
, (3.49)

where the coupling g2
k has to run with the effective cut-off scale kphys, and is estimated

by an appropriate choice of the running coupling αs as before. Of course the running of
the gauge coupling in SU(3) is different from the running in SU(2).

3.3.2 Integration of the Flow

Having derived the flow equation, we have to devise a method for solving them numeri-
cally. This is more involved than before. For SU(2), the potential depends only on one
variable, for the case of SU(3) however, it depends on two variables. This increases the
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numerical effort to solve the equations drastically but there are also conceptual complica-
tions stemming from the boundaries. As we detailed for the case of SU(2) the boundaries
are crucial for confinement. A potential depending on two variables has of course not
only two boundary points, but instead boundary lines. Before discussing this more detail,
let us discuss a trick which renders the equations more manageable.
Using the Weiss potential V⊥,k as an input into the flow equation is a disadvantageous

choice. It is a non-convex potential that leads to a flow which always has to balance
this non-convexity. Therefore, it is advantageous to use a more convex potential, i.e.
a potential with second derivatives that are positive. From the solutions of the SU(2)
calculation, we have such a potential at hand and will use it as input. This is easily done
by adding a "0", 0 = ∂t(∆VSU(2),k−∆VSU(2),k) to the flow equation, where ∆VSU(2),k is the
potential generated by the flow in SU(2). After splitting the potential to be computed
into two terms ∆Vk = ∆VSU(2),k + ∆VSU(3),k, where ∆VSU(3),k is the potential we want to
compute, the flow is schematically given by

∂t∆Vk = fRG[∆Vk + V⊥,k],

⇒ ∂t∆Vk = −∂t∆VSU(2),k + fRG[∆Vk + ∆VSU(2),k + V⊥,k], (3.50)

where we set ∆Vk = ∆VSU(3),k after having split the potential. The full effective potential
is then ∆Vk + ∆VSU(2),k + V⊥,k
At its root eq. (3.50) is an equation for the dimensionless effective potential V̂ = β4Vk

in terms of V̂⊥ = β4(V⊥,k + ∆VSU(2),k) and ∆V̂ = β4∆Vk. The infrared RG-scale k
naturally turns into the modified RG-scale k̂ = kβ, that is all scales are measured in
units of temperature. The flow equation then takes the following form

∂k̂∆V̂k̂ = −∂k̂∆V̂SU(2),k +
2k̂4

3(2π)2

(
1 +

η0

5

)
2k̂2 + g2

k

(
(∂2
ϕ3

+ ∂2
ϕ8

)Vk
)

(k̂2 + g2
k∂

2
ϕ3
Vk)(k̂2 + g2

k∂
2
ϕ8
Vk)− (g2

k∂ϕ3∂ϕ8Vk)
2
. (3.51)

This equation governs the flow of the effective potential. It resembles the flow equation
of a scalar O(2)-theory. In our case it is additionally driven by two external inputs, V⊥
and αs.
The first input, V̂⊥, is computed in a perturbative approximation to the spatial gluon

sector. The potential V̂⊥[ϕ3, ϕ8] is within our truncation a sum of contributions from a
well known potential depending solely on one variable, V̂⊥,SU(2)[ϕ]. The corresponding
expression is

V̂⊥[ϕ3, ϕ8] = V̂⊥,SU(2)[ϕ3] + V̂⊥,SU(2)

[
ϕ3 +

√
3ϕ8

2

]
+ V̂⊥,SU(2)

[
ϕ3 −

√
3ϕ8

2

]
. (3.52)

V̂⊥,SU(2)[ϕ] is shown in Fig. 3.4 for various values of the RG time k̂. It approaches
the perturbative SU(2) Weiss potential [52] for vanishing cut-off k̂ = 0. Consequently
V̂⊥[ϕ3, ϕ8] yields the perturbative SU(3) Weiss potential for k → 0
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Figure 3.10: Contour Plot of the Weiss potential, in this projection, the symmetries of
the potential indicated by the white lines.

When inspecting the landscape of the SU(3) Weiss potential, we can immediately
identify symmetries. In order to extract information about confinement, we therefore,
do not need the potential over a full period, but can restrict our computations to the
so called Weyl chambers. These are the triangular areas indicated by the white lines
in Fig. 3.10. These triangular region originate from each other upon mirror symmetry.
Along the lines parallel to the ϕ3 or ϕ8 axis, the symmetry is a simple reflection. Along
the diagonal lines, we have to apply an inversion at the center of the diagonal.

It is tempting to use the symmetries of the Weyl chambers to define the second deriva-
tives on the boundaries, that are not easily accessible otherwise. However, we cannot use
these symmetries, as they result in a phase transition and a potential, that depends on
the input ∆VSU(2),k into the flow equation. This input should not alter the results, as we
simply added a “0”, c.f. eq. (3.50).

Still we can already in this setting observe confinement in SU(3). As the potential
depends on the input, also the phase transition temperature is dependent on that input.
One might have hoped that there is a class of deformations, where a deformation of the
potential does not drastically effect the phase transition temperature. Attempts, to find
these deformations have failed so far and it seems that the solution to this problem has
to be developed along other lines of reasoning.
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Note that the coupling we employ is almost the same as the one depicted in Fig. 3.5,
except that now the fixed points are different from the fixed points there. For the fixed
points, we get α∗,3D,SU(2) = 3

2
α∗,3D,SU(3)

3.3.3 Results

Although the results obtained by using the trick eq. (3.50), do not give unique results,
but rather depend on the precise shape of ∆VSU(2),k, we want to pursue this approach.
This is a good exercise, since the flow using the symmetries of the potential, gives a good
picture of the mechanisms driving the confinement phase transition. Therefore, let us use
these results to describe the general features of the confinement mechanism in an fRG
setting.
The Polyakov loop can vanish at various points in the ϕ3 − ϕ8-plane. It is given by

L =
1

3

(
exp(− i

2
√

3
ϕ8)

[
exp(

i

2
ϕ3) + exp(− i

2
ϕ3)

]
+ exp(

i√
3
ϕ8)

)
. (3.53)

Let us restrict ourselves to ϕ8 = 0. In this case it is easy to see, that for cosϕ3/2
!

= −1/2
the Polyakov loop vanishes. This is achieved for ϕ3 = 4π

3
. Therefore, we require the

potential to have an absolute minimum at this combination of field values, or any center
transformed combination of them.
We restrict the domain of the gauge fields to one Weyl chamber2. In Fig. 3.11 we show

the potential for different values of the scale k̂ for a temperature well below the phase
transition temperature. We can track the minimum of the potential which starts to move
away from the edges the Weyl chamber. It is precisely at these edges, where L = 1. The
observation that there are two minima coming from the edge of the Weyl chamber is
owed to the fact that this domain of the variables still carries information redundantly.
The minima are physically equivalent and eventually merge into one single minimum. It
is located right at ϕ8 = 0 and ϕ3 = 4π

3
, i.e. confining.

For temperatures above the phase transition temperature, the minima do not evolve
to the confining minimum. As we can restrict our observations to the ϕ8 = 0 axis - all
other minima can be obtained by center symmetry - a plot of the potential on this slice
is sufficient to determine the phase we are in.
The flow of the potential on the ϕ8 = 0 slice is depicted in Fig. 3.12 for a temperature

well below the physical phase transition temperature. We clearly observe the development
of a second minimum, which evolves towards a ϕ3 = 4π

3
, where at the end of the flow,

it remains the absolute minimum. For temperatures above the critical temperature, the
second minimum that develops around ϕ3 = 4π

3
remains only a local minimum. Therefore,

the ground state is deconfining.

2The domain we work on can be divided into even smaller regions that carry the physical information.
However, the numerical implementation becomes more complicated.
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3.3 Confinement Phase Transition for SU(3)

Figure 3.11: The effective potential plotted in one Weyl chamber for various values of the
scale. From top left, to bottom right k̂ = 18, 7, 5, 0.
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Figure 3.12: The effective potential on the slice ϕ8 = 0 at T = 200 MeV.
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4 QCD phase diagram

“Damit is der Käs gegessen”
Sprichwort

The QCD phase diagram has been an active area of research in the past two decades
and it still is. Shortly after establishing QCD as the theory of strong interactions, it has
already been argued, that hadrons, which consist of quarks and gluons, should dissociate
at high temperatures or densities [3, 4]. This can be viewed as a prelude to the ideas of
the quark-gluon plasma. From that time on a rich spectrum of other phase of strongly
interacting matter has been conjectured and theoretically investigated.

Introduction

We want to investigate the properties of the deconfinement phase transition in the pres-
ence of a finite chemical potential and its relation to chiral symmetry breaking. This has
been done in many phenomenological models, but still awaits a first principle calcula-
tion. Attempts to solve QCD at finite chemical potential on the lattice suffer from the
notorious sign problem and are thus restricted to small chemical potential. Information
about the phase diagram can be inferred using expansion techniques. Lattice QCD also
faces problems in the investigation of the chiral phase transition, as on the lattice it is
very difficult to impose chiral symmetry.

As a first approach towards the full QCD phase diagram, we investigate the confine-
ment and the chiral phase transition in the presence of dynamical quarks without quark
chemical potential. Once this is established, we can move to the next step and incorporate
a finite chemical potential, which allows for a grip on the full phase diagram.

Of interest is also the relation between the chiral and the deconfinement phase tran-
sition, which has so far not been established. Most results on the lattice point towards
a coincidence of the chiral and the deconfinement phase transition temperature, see e.g.
Fig. 4. While lattice calculations are very precise, they do only provide limited insight
into the physical mechanism at work. Therefore, the numerical coincidence of the phase
transitions calls for further explanation.

Recently there has been a debate wheter the two transitions coincide or if the critical
temperatures do not coincide in lattice simulations. While the Bielefeld group observes
matching transition temperatures [88], the Wuppertal group on the other hand measures
different transition temperatures [89].

So far, attempts to find an exact relation between the chiral and the deconfinement
phase transition have sparked fruitful research, which lead to fruitful results. However, it
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Figure 4.1: Polyakov loop (left) and chiral condensate (right), with their respective sus-
ceptibilities. Lattice data taken from [87]

was not possible to show a precise relation between the two phase transition temperatures.
With our functional RG approach, we want to contribute to this ongoing debate.
We start with an investigation of the chiral transition, continuing with the deconfine-

ment phase transition before investigating their interrelation.

4.1 Chiral Phase Transition

Our understanding of the nature of strong interactions in terms of QCD is that all hadrons
are composite objects. These are build up from quarks and gluons, with masses domi-
nantly generated by quark-gluon-dynamics. In simple models, chiral symmetry breaking
can explain the emergence of the macroscopic hadron masses. The dynamically gener-
ated mass, the so-called constituent quark mass, of e.g. up-quarks in a non-perturbative
treatment of QCD is about 1/3 of the proton mass. Thereby giving a glimpse at the mech-
anisms underlying the formations of hadrons. For the physics at hand, it is important to
consider the transition from microscopic to macroscopic states [41, 49, 51, 90–93].

Current Status

The chiral phase transition in QCD has been investigated in various approaches. Predom-
inantly in models like the well known (P)NJL model [94, 95]. and (P)QM models, but also
employing the MIT bag model. We will introduce the NJL and the QM model shortly.
The PQM and PNJL model are QM and NJL models supplemented with a potential for
the Polyakov loop. The Polyakov loop is then coupled to the quarks by means of the co-
variant derivative leading to interesting results, for details see e.g. [96–106] The Polyakov
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4.1 Chiral Phase Transition

loop potential is usually taken from lattice calculations, ensuring the correct confinement
phase transition temperature. Thereby the hard problem of describing confinement is
taken out of the analysis and given to the lattice community.

A first calculation of the chiral phase boundary using functional renormalisation group
techniques in one-flavour QCD has been performed in [18].We aim to improve this cal-
culation for the zero temperature, finite density case, where quark fluctuations become
important.

4.1.1 Dynamical Hadronisation

In a full treatment of QCD in a non-perturbative setting, the quark sector and the
gauge sector feed back into each other non-linearly: the gluons generating quark self-
interactions that can become the relevant interaction in the IR, where the theory is
strongly coupled. Our analysis will make excessive use of this interaction, neglecting the
complicated momentum structure, which could be generated by the gluons.

Eventually, we want to work with a quark-meson model, which has its roots in the
Nambu-Jona-Lasinio (NJL) model. While not giving an exhaustive derivation of the
quark-meson model from the NJL model, we want to outline the steps leading from one
to the other. Particularly, we want to highlight, why it is useful for studying chiral
symmetry breaking and its relation to confinement, as well as exploring the QCD phase
diagram.

The NJL model is an extremely useful model for studying chiral symmetry breaking
or other phenomena like colour superconductivity, whereas it lacks confinement. As it
was originally conceived to model nuclear interactions of protons and neutrons this is not
surprising as confinement was not an issue. The NJL model is in some sense complemen-
tary to the MIT bag model [107–109] which phenomenologically covers confinement, but
violates chiral symmetry.

The pioneering idea of Nambu and Jona-Lasinio was to generate a mass gap in the
Dirac spectrum analogously to the energy gap of a superconductor in BCS theory [25].
It was thereby possible to generate large masses, while keeping the Lagrangian free of a
fermion mass and thus keeping it chirally symmetric.

Of course, the NJL model lacks confinement, which is a consequence of the neglect of
gauge degrees of freedom. It has still been used to analyse many aspects of the QCD
phase diagram. To include gauge dynamics, the NJL model can be extended with a
confining potential for the Polyakov loop which couples to the quark fields. These so-
called Polyakov NJL (PNJL) models have recently been applied successfully, see e.g.
[104].

The action of the NJL model in the 2-flavour case is

SNJL =

∫
d4x

{
ψ̄
(
i/∂ + iγ0µ

)
ψ +

λ̄ψ
2

[(ψ̄ψ)2 − (ψ̄γ5τψ)2]

}
(4.1)

with ψT = (ψ1, ψ2) consisting of two fermion species and ~τT = (σ1, σ2, σ3), with σi being
the Pauli matrices. The four-Fermi coupling λ̄σ can be thought of as a remnant of gluonic
interaction.
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The generating functional for disconnected Green’s function then reads

Z[η, η̄, J0, ~J ] =

∫
DψDψ̄ exp

(
−SNJL + η̄ψ + ψ̄η + J0(ψ̄ψ) + ~J · (ψ̄iγ5~τψ)

)
(4.2)

The NJL model possesses particularly interesting symmetries for the investigation of the
QCD phase diagram. The Lagrangian is invariant under vector (V) and axial-vector (A)
rotations, the generators of which are defined by

UV = exp
(
i~τ ~Θ

)
and UA = exp

(
iγ~τ ~Θ

)
, (4.3)

where ~Θ is a constant vector. The axial-vector transformations are the chiral trans-
formations that we will put special emphasis on, an explicit mass term would destroy
this symmetry. It can, however, still be broken dynamically by a vacuum expectation
value of the chiral condensate 〈0|ψ̄ψ|0〉. This vacuum expectation value can be generated
by vacuum fluctuations. According to Goldstone’s theorem, there exist three massless
pseudo-scalar excitations, that are not present in the NJL model action. Therefore, these
must be excitations of the ground state. We have to find a method to incorporate these
bound states into the theory.
Particularly when working with the fRG, the method of choice is (re-)bosonisation,

in this context also know as dynamical hadronisation, which is precisely what we are
aiming at. The procedure behind, the Hubbard-Stratonovich transformation [110, 111],
introduces new scalar fields into the theory and trades quartic fermion interactions for
mass terms of the scalars. Albeit this is at first a mathematical identity, the scalars
acquire a physical meaning, i.e. in QCD they can be identified with (pseudo-) scalar
mesons, the pions and the sigma meson. The pions can then be identified with the
Nambu-Goldstone bosons related to chiral symmetry breaking. With this procedure, we
naturally also generate a Yukawa interaction between fermions and bosons, which in turn
regenerates the four-fermion interactions in the RG flow.
Formally the Hubbard-Stratonovic transformation can be implemented by multiplying

the generating functional with a constant:

exp

(∫
d4x

m2

h2
(J2

0 + ~J2)

)
= N

∫
DσD~π exp

(
−
∫
d4x

m2

2
(σ2 + ~π2)− m2

h2
(J2

0 + ~J2)

)
,

(4.4)
N is a normalisation constant, m and h are at this stage arbitrary constants. σ and ~π
are auxiliary fields, to which we will give meaning later. Upon shiftig the variables of
integration

σ → σ − 1

h
J0 +

h

m2
ψ̄ψ and ~π → ~π +

1

h
~J +

h

m2
ψ̄i~τγ5ψ (4.5)

the so-called bosonised action reads

SQM =

∫
d4x

{
ψ̄
(
i/∂ + iγ0µ

)
ψ +

m2

2
(σ2 + ~π2) + hψ̄(σ + iγ5~τ~π)ψ

}
. (4.6)
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Figure 4.2: The flow equation of the four fermion coupling. Straight lines correspond to
quark propagators, curly lines are gluons.

At this point, the auxiliary fields can be reinterpreted. In the action, we set λ̄ψ = −h2/m2.
In the generating functional, we then have to rescale the source terms, which we do not
explicitly display at this point. As advertised above, we now have the Yukawa interaction
of strength h and a mass term with mass m for the scalar fields, which can be identified
with the scalar meson and the Goldstone bosons - the pions - in low energy QCD.

To obtain a model of quarks and mesons, we only have to add a kinetic term for the
meson fields that were previously auxiliary fields and a self interaction for the bosons.
This can be conveniently parametrised by a potential U .

In the context of the fRG the Hubbard-Stratonovich transformation has to be upgraded
with a procedure that keeps track of the four-fermion interactions, that are re-generated
during the flow. The diagrams leading to this re-generation are shown in Fig. 4.2. They
can be deduced from the model we introduce in the next section, see also [112]. There
we already took into account, that we want to include gluons - at least partly - into our
equations. Without gluons and starting from a bosonised theory, there would of course
be no re-generation of the four-fermi coupling.

Within the our model, we aim at a vanishing four-fermi coupling and therefore have
to bosonise this interaction. In first approximation these contributions can be neglected
since they are small due to the large mass gap at small momentum scales. However, these
contributions are essential for bridging the gap between the perturbative QCD sector and
the low-energy limit of QCD.

If we think of the flow as being a series of discrete steps, it is obvious, that we have
to bosonise at each step [49], such that the re-generated four-fermion interactions are
always redirected into the boson sector. Starting from a completely bosonised action, the
rebosonisation procedure ensures a vanishing four-fermi coupling throughout the flow. We
have visualised this in Fig. 4.3. We conclude that the information from the four-fermion
interaction can be conveniently stored in the bosonic sector.

In a flow equation approach, we can allow for four-fermi coupling along with a bosonised
interaction. Applying the bosonisation technique we can allow for a coexistence of the
sectors and a description in the appropriate degrees of freedom. As we will see below.

How does chiral symmetry breaking manifest itself in the quark-meson model? A
quark mass term in SQM arises, if σ acquires a vacuum expectation value, similar to the
Higgs mechanism. Therefore, the boson potential must develop a non-trivial minimum,
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Figure 4.3: Dynamical hadronisation within the flow equation approach. Even for λ̄ψ a
four-fermi coupling is generated

i.e. the boson mass has to become negative. This, in turn, is equivalent to a diverging
four-fermion coupling

λψ = − h
2

m2
→∞. (4.7)

In the bosonised theory, this corresponds to a vanishing boson mass, i.e. m → 0. In
the flow equation setting, this is a consequence of the running of the couplings with the
scale. The scale at which the four-fermi coupling diverges, or in the rebosonised language,
where the boson mass vanishes, is called chiral symmetry breaking scale kcr. An example
of the flow of the mass parameters is shown in Fig. 4.4 Fermions have the tendency to
generate disorder due to the negative sign in the flow equation, i.e. they generate a non-
trivial minimum in the boson potential. At large scales, we start with an unbosonized
theory and the flow generates the boson fermion mass and thereby we eventually get
chiral symmetry breaking.

4.1.2 The Model

Our analysis is based on the full QCD flow, including fermionic self-interactions that are
generated by gluons. We also take bosonic terms into account representing mesons in the
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Figure 4.4: Flow of the masses, we clearly see the onset of chiral symmetry breaking
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4.1 Chiral Phase Transition

theory, as explained above. Note that we work only with one flavour, Nf = 1.
The truncation we use is similar to the one in [18], note that we do not work in

Polyakov gauge as before, but in Landau gauge. Since we want to study the influence
of the chemical potential and neglect the temperature for the moment, the integration
is over all space-time, action consist of two contributions, the matter Γm and the gauge
sector ΓYM :

Γm =

∫
d4x

{
ψ̄
(
i /D[A] + iγ0µ

)
ψ +

λ̄ψ
2

[(ψ̄ψ)2 − (ψ̄γ5ψ)2]+

1

2
Zφ (∂µΦ)2 + U(Φ2) +

h̄√
2

(ψ̄(~τ · Φ)ψ)

}
(4.8)

ΓYM =

∫
d4x

ZAQCD
4

F a
µνF

a
µν + Γgauge (4.9)

The term Γgauge contains contributions to the action which are not contained in the
standard Yang-Mills term, such as ghosts or higher order terms in the gauge fields, that
can be generated during the flow.

Since we work in 1-flavour QCD, there will be only one Nambu-Goldstone boson from
chiral symmetry breaking, together with the scalar meson, we combine the two into the
O(2) vector ΦT = (Φ1,Φ2). Then we can write the Yukawa coupling term in a a compact
form by means of ~τ = (γ5, i · 1d). U(Φ) is the scalar potential, defined in [18] and Zφ is
the scalar wave function renormalisation. The first two terms describe quark dynamics
and interactions, as know from the NJL model.

Note that there is a redundancy in this action, as the four-fermi coupling is related to
the boson potential and the Yukawa coupling by a Hubbard-Stratonovich transformation.
With the aforementioned re-bosonisation techniques which we apply in the following [41,
49, 50], we can use this to our advantage. We can initiate the flow at high scale with
the appropriate high energy degrees of freedom, quarks and gluons. During the flow the
mesonic degrees of freedom take over as we lower the scale. With this procedure we
manage to describe strong interactions always in the degrees of freedom that give a good
description of the physics at hand.

This model has successfully been applied in an investigation on the chiral phase bound-
ary in 1-flavour QCD [18]. The curvature t2 of the chiral phase boundary defined by

Tc(µ)

Tc(µ)
= 1− t2

(
µ

πTc(0)

)2

+ · · · , (4.10)

was computed to a value of 0.97 when including global UA(1) symmetry and 0.4 with
anomalously broken UA(1) symmetry.

Running coupling modifications

Before we solve the flow for these quantities, we discuss another very important quantity,
particularly because it plays a crucial role in the investigation of the deconfinement phase
transition: The running gauge coupling.
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The running gauge coupling of QCD has been subject of many studies, particularly on
the lattice and using functional methods like the fRG or DSEs. The behaviour of the
running coupling in Landau gauge Yang-Mills theory is well established and has already
been used in the previous chapter as an input into our calculation. There exists a vast
literature on Landau gauge QCD, see e.g. [45, 46, 71, 72, 74–76, 83–85, 113–127].
Here we want to study its behaviour in the presence of a finite chemical potential.

Obviously, a study of the full system of quarks and gluons is daring and not the scope of
our work. Instead, we add the effect of the vacuum polarisation to the flow of the gluon
wave-function renormalisation ZAQCD . The vacuum polarisation diagram is shown in Fig.
4.5.
Non-perturbative definitions of the strong coupling αs hinge on the vertices. In most

of the investigation the ghost-gluon vertex were used to the define the strong coupling,
then it is given by a product of the wave function renormalisation of the ghosts and
gluons. Due to the non-renormalisation theorem of the ghost-gluon vertex [72, 113, 128]
in Landau gauge, the strong coupling can be defined in terms of the ghost and gluon
propagator:

αs(p
2) =

g2

4π

1

ZAQCD(p2)Z2
C(p2)

. (4.11)

Other definitions of the running coupling are of course also possible and have been tested,
four example the coupling defined by virtue of the four-gluon vertex [117]. They showed
differences only in the low momentum regime, where the coupling does not influence
hadron physics.
The propagators in Landau gauge YM have a very simple representation in terms of

projectors and dressing functions. For the fRG setting, a detailed derivation can be found
in [129], we state the result for the gluon propagator using a 4D optimised cut-off,

GAA(p, k) :=

(
δ2Γk

δAaµδA
b
ν

(p) +RAA(p, k)

)−1

=
1

ZA(p, k)
Πt
µνδab

(
θ(k2 − p2)

1

k2
+ θ(p2 − k2)

1

p2

)
, (4.12)

where Πt
µν = δµν − pµpν

p2
is the transversal projector. At finite temperature, Lorentz

symmetry is broken and it is advantageous to work with a 3D cut-off. The dressing

p p

p + q

qq

Figure 4.5: The vacuum polarisation diagram with regulator insertion
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Figure 4.6: The gluon and ghost wave-function renormalisation functions ZA and ZC .

function for pure Yang-Mills theory for vanishing temperature and density, as computed
e.g. in [71] are shown in Fig. 4.6

The flow of the wave function renormalisation ∆ŻAQCD of the gluons consists of a
contribution from the ghost-gluon sector ∆ŻAYM and from the matter sector ŻAQ .

∂tZAQCD = ∂tZAYM (p2) + ŻAQ(m,µ, k) (4.13)

∆ŻAQ is given by the quark loop displayed in Fig. 4.5, details of the calculation are found
in App. C.1.

The logarithmic scale derivative of the gauge field wave function renormalisation, i.e.
the anomalous dimension of the gauge field with contributions from quarks ηAQ is given
by:

ηAQ = ∂t lnZAQ = − g2
k

(4π)2
4 · 16

k3

(k2 +m2)
3
2

(1− θ(µ−
√
k2 +m2)). (4.14)

Here, we will use the approximation that ŻAQ(p2) = ŻAYM |p2=k2 . This is a valid ap-
proximation as the scale derivative of the regulator ensures that the momentum integral
receives only contributions around k2,c.f. figure 2.2.
Let us discuss some properties of the anomalous dimension, as it will play an important

role in the discussion of the results. It is proportional to the gauge coupling αs, we will
set g2

k/4π = αs,k=0(p2 = k2). As αs is small in the UV and grows large in the IR, the
largest contributions will come from the mid-momentum regime to the IR part of the
flow.

For large fermion masses, the flow in the IR will be suppressed like (k/m)3. As the
fermion mass is generated in the IR part of the flow, we see already at this point, that
there is a balance between the enhancement due to the coupling and a suppression due
to the fermion masses.
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Finally, the chemical potential µ comes into play via the step-function. For the step-
function to be non-vanishing, the chemical potential has to be larger than the combination
of the cutt-off scale and the fermion mass. Roughly speaking, this can only have an effect
on the flow, when the chemical potential is of the order of the fermion mass. The quarks
decouple then from the flow very early.

4.1.3 Results

Recent flow equation approaches towards chiral symmetry breaking in QCD were predom-
inantly carried out in background field gauge [18, 76, 112]. We incorporated the scaling
of the anomalous dimension into the flow equations for the scalar fields, the Yukawa cou-
pling h, which occurs after bosonisation of a four-fermion vertex, and the four-fermion
coupling λφ. The truncation yielded a space-like wave-function renormalisation ηφ and
can be seen in [18].
This model is now extended through the replacement of the scale derivative of the field

strength renormalisation in background formalism with ∆ŻAQ(m,µ, k) derived above.
The ghost and gluon propagators are obtained by using suitable fits from full Yang-Mills
theory and lattice QCD [130]. The aim of our analysis is to find a relation between
the chemical potential and the critical scale, which then yields a relation between the
chemical potential and the chiral phase transition temperature.
The calculations are performed for a constant fermion mass, including a finite chemical

potential. The initial conditions are fixed at the Z-boson mass scale of 90 GeV, as this
corresponds to the perturbative regime and therefore the field strength renormalisations
do not contribute. In this regime αs is given by αs(mZ) ≈ 0.118 [131], the Yukawa
coupling h by h(mZ) = 0.01, and the four-boson coupling λφ by λφ = 0. Note that the
starting value of the Yukawa coupling is a free parameter and the results are independent
of it [50].
For simplicity, the flow of the fermionic wave function renormalisation ηψ, given by the

self-energy diagrams of the fermion is neglected, i.e. we set Zψ = 1. It has been shown in
other calculations, that this is a reasonable approximation, as the flow of Zψ is not very
pronounced.
With the critical scale at vanishing chemical potential, we can set a relation between

the temperature and the critical scale. Let us therefore first study, what happens at
µ = 0.
As explained above, we start at some high UV scale, where the theory can be treated

perturbatively and we are in the chirally symmetric phase. Upon lowering the scale, the
coupling strength αs increases due to the gluonic self-interaction. When the coupling has
grown large enough 1 , for the quarks to form bound states, they condense into these
and chiral symmetry is spontaneously broken. This is reflected in the development of a
non-trivial minimum in the bosonic potential U , as described above. The behaviour of
the four-fermi coupling can nicely be visualised for different values of the coupling, see
Fig. 4.7. For simplicity a constant coupling is assumed. The flow is based on the flow

1In the NJL model reflected by a diverging four-fermi coupling
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Figure 4.7: Fixed-point behaviour of the four-fermi coupling from Fig. 4.2, see also [76],
for different values of the strong coupling. Arrows indicate the direction of
the flow, i.e. decreasing the scale. Consequently red dots are IR fixed points,
whereas blue dots are UV fixed points.

equation represented by Fig. 4.2.
When the strong coupling is zero, the flow always ends up at vanishing four-fermi

coupling, as it should be, because the four-fermi coupling in the NJL model is generated
by gluons. If their coupling vanishes, there should be no quark self-interaction. In the NJL
model one can still observe chiral symmetry breaking by choosing a starting value of the
four-fermi coupling larger than the UV fixed point. The effect of the gluonic interaction is
to shift the flow trajectory downwards, allowing for a finite four-fermi coupling in the IR,
until a critical coupling αcr is reached. When increasing the strong coupling even further,
there is no finite fixed point left and the flow always generates a diverging four-fermi
coupling, signalling chiral symmetry breaking.

The fermionic flow increases the vacuum expectation value (VEV) of the bosonic po-
tential, thereby increasing the dynamically generated fermion mass, which is proportional
to 〈ψ̄ψ〉. With increasing mass, the fermion propagator is more strongly suppressed.A
large scales, k dominates the propagator. The further we lower the cut-off scale, the more
the fermion mass has influence on the flow. At some scale, the strong dynamical chiral
symmetry breaking generates a mass, that is large enough to decouple the quarks from
the flow. The scale at which this happens is called freeze-out scale.

Below the freeze-out scale massless pion fluctuations drive the potential back towards
the symmetric phase. It is the freeze-out scale, that determines, whether the theory turns
back into the symmetric phase, or remains in the broken phase until the end of the flow.
As we will see, the chemical potential has the largest impact on that.

Upon increasing the chemical potential µ, there is at first no significant change of the
critical scale kcr. This does not come unexpectedly. The chemical potential enters the
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Figure 4.8: The dependence of the chemical potential on the running of the strong cou-
pling αs. With increasing µ the graph approaches the Yang-Mills result.
However its dependence on µ is small. For µ > µcr the fermions do not
contribute to the flow.

flow only through the vacuum polarisation of the gluon, c.f. eq. (4.13) and eq. (4.14).
As long as the chemical potential remains small compared to the fermion mass, or the
cut-off scale, the modifications of the vacuum polarisation due to the chemical potential
are small, the contribution comes only at the very end of the flow. Keep in mind, that
the chemical potential does not have a direct influence on the chiral condensate, but only
through the gluons.
By increasing the chemical potential further the vacuum polarisation is modified for

longer RG-times during the flow. Thus the decoupling of the quarks occurs at larger
scales in the flow. Eventually, we reach a chemical potential µcr, above which the bosons
drive the theory back into the symmetric phase and chiral symmetry is restored again.
Let us now study these qualitative results in a little more detail and add some numerical

results to it. We start with the running of the coupling αs, defined from the ghost-gluon
vertex, with the scale k, shown in Fig. 4.8. As mentioned, the initial conditions are fixed
at the Z-boson mass scale mZ . The dashed curve shows the behaviour of pure YM in
Landau gauge [84, 122, 123]. We then see that the quark contributions to the anomalous
dimension lower the value of the coupling. This is also observed perturbatively. We
also observe that the modification in the mid-momentum regime become weaker with
increasing chemical potential. This is not surprising, as the quarks decouple earlier, as
explained above. In the IR αs approaches the IR fix point behaviour of Landau gauge
independent of µ. This is easily understood, as the vacuum polarisation switches off,
once the cut-off scale falls below the chemical potential and we are left with the pure YM
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Figure 4.9: Plot of the dressing function of the gauge field versus k. The upper graph
corresponds to the pure Yang-Mills solution, the lower includes quark contri-
butions.

flow.
The behaviour of the strong coupling is reflected in the behaviour of the dressing func-

tion 1/ZA, see Fig. 4.9. In the perturbative regime the contributions of the polarisation
vanishes with the coupling and approaches the pure gauge result. In the infrared, the fixed
point behaviour dominates the flow and the changes induced by the vacuum polarisation
become negligible.

In Fig. 4.10 we quantitatively see the feature of dynamical chiral symmetry breaking
that we described above qualitatively: The quark mass increases rapidly below the chiral
symmetry breaking scale and reaches a maximum. Then the evolution of the mass stops
as the quarks decouple from the flow for scales smaller than the freeze-out scale.

Equally well, we can see the symmetry breaking scale in the plot of the boson masses
in Fig. 4.11. With decreasing scale, we observe that also the boson mass decreases, at
the chiral symmetry breaking scale kcr it vanishes. Below the chiral symmetry breaking
scale the massive excitation, the σ-meson becomes massive again.
Fig. 4.12 depicts the differences of the strong running coupling αs with varying quark

mass mψ at vanishing chemical potential.
The critical values we obtained for the chemical potential and the critical scale are

kcr ≈ 440 MeV at µ = 0 and µcr in between 350-400 MeV. This agrees with the values
found in Dyson-Schwinger equations and other RG calculations [18].
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Figure 4.10: m2
ψ = h̄〈σ〉 as function of k for various µ. Up to a critical scale, no fermion

mass is generated dynamically. This critical scale depends on the value of µ.
kcr is shifted to higher values for larger µ. At the maximum, the fermions
decouple and hence the mass approaches to a constant.
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Figure 4.12: Plot of αs versus k for massless quarks at µ = 0. Different values of the
dynamically generated fermion mass approach lower values of the IR fixed-
points than the full Yang-Mills theory (compare values of fixed-points with
plot 4.8). The fixed-points shown here correspond to the full QCD fixed-
points.
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4.2 Deconfinement Phase Transition

In earlier parts of this work we showed that within a simple truncation we can describe
the deconfinement phase transition of Polyakov gauge Yang-Mills theory. Since gluons
do not explicitly couple to the chemical potential, we have to extend our truncation and
include dynamical quarks. This is interesting in its own right, as we can get a handle
on the deconfinement phase transition in the entire QCD phase diagram. Moreover, the
ideas developed in this section will play a role in the discussion of the relation between
confinement and chiral symmetry breaking. There, we want to study the effects of quarks
on the Polyakov loop potential, which is an important input into the calculation.
We can also study the phase transition behaviour of QCD for arbitrary quark masses

and chemical potential. This can be used to map out the phase diagram in the quark
mass directions. Related to these investigations is the search for the critical endpoint
in QCD. The existence of a QCD critical point is still an active area of research and
has not been settled. From the experimental side there is very little know about the
critical endpoint, it is thus the hope to compute the location of the critical endpoint or
the critical region theoretically, see e.g. [132], such that the experimental searches can
be focused on a promising region. The standard view on this is, that there is a critical
point as shown in Fig. 4.13. Albeit, recently it has been conjectured, that it might
also be that the surface indicated there has another curvature and therefore there is no
critical point. This matter is far from being settled, as from the theoretical side there are
many uncertainties. Note that most of the investigations mentioned here focus on the
chiral phase transition. We will give a discussion of the quark mass dependence of the
deconfinement phase transition in our approximation. It is expected that the chiral and
the deconfinement phase transition are closely related and the situation in both cases is
similar.
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Figure 4.13: Schematic (chiral) phase transition behaviour in SU(3) QCD for vanishing
chemical potential with varying quark masses (left)[133]. Including chemical
potential (right)[15].
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We focus on the effect the quarks have on the gluons and neglect the backreaction of the
gluons on the quarks. The backreaction is not a dominant effect for confinement, since
confinement is generated in the gauge sector. The effect of the incorporation of quarks
manifests itself in two instances. Remember that we had two crucial objects in the
calculation of the full effective potential for Yang-Mills theory: the Weiss potential and
the running gauge coupling. The Weiss potential is generated by the spatial gluons and is
treated as an input. We include dynamical quarks in a similar fashion, by adding a quark
determinant to the action. This will result in an additional contribution to the potential,
which will obviously result in a modification of the phase transition temperature. Of
course, at zero chemical potential with dynamical quarks, we expect a crossover rather
than a phase transition and we will also observe this in our calculation. The second
difference is that the gauge coupling will be modified in the presence of quarks. This can
already be seen at the QCD β-function for the gauge coupling computed in perturbation
theory

βg = −
(

11Nc

3
− 2Nf

3

)
g3

16π2
. (4.15)

The Nf dependence comes with a different sign than the Nc dependence, i.e. the coupling
is weakend by quark dynamics. In a non-perturbative treatment of QCD, e.g. using DSEs,
fRGs or on the lattice, the amplitude of the gluon propagator is reduced particularly in the
mid-momentum regime. As detailed before, a non-perturbative definition of the running
coupling can be obtained from the gluon propagator. And we showed the influence of the
quarks on the gauge coupling.

Neglecting backreactions of the gluons on the fermions implies, that we will be able to
perform some calculations analytically.

4.2.1 Truncation

To include the quarks we add terms including fermionic operators to the effective action.
For a full study of QCD with dynamical fermions this action includes a kinetic term with
scale and momentum-dependent wave function renormalisation, scale dependent mass
and vertex correction, as well as possible higher order corrections.

Here we resort to a simpler truncation, starting point is the action

Γψ = ψ̄(Zψ(D2)i /D + Zm(D2)m)ψ +O((ψ̄ψ)2) ⇒ Γ
(2)
ψ = Zψ(D2)i /D + Zm(D2)m.

(4.16)
In the presence of chiral symmetry breaking, we always have to compare momentum scales
to the mass scale mχ set by chiral symmetry breaking. We consider only momentum
scales much smaller than mχ, i.e. (p/mχ)2 � 1. Therefore, we can assume momentum-
independent wave function renormalisations, Zψ(D2) = Zψ(0) = Zψ and Zm(D2) =
Zm(0) = Zm. We take the wave-function renormalisations to be field-independent. In
the flow equation they can then be absorbed into the definition of a renormalised mass,
such that we have Γ

(2)
ψ = /D + Zm/Zψm. Furthermore, we have

µ
d

dµ

[
Zm
Zψ

m

]
= 0. (4.17)
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This means, that this is a physical quantity and we can identify it with the physical mass.
It is now simple to write down the effective action. We work in SU(2), which is a good

model system to set up our method. In Polyakov gauge, i.e. setting any component of
the gauge field except A3

0 to zero, the action in momentum space reads

Γ
(2)
ψ = −(/~p+ γ4(ωn + gA3

0σ
3)) +m, (4.18)

with fermionic Matsubara frequencies ωn = πT (2n + 1) and we introduced the notation
/̂p := /~p/|~p|. For the cut-off we impose the requirement that it has chiral properties,
since we do not want to introduce any artificial chiral symmetry breaking, except due to
the current quark mass. To be consistent with our preceding calculation, we choose a
regulator function which is of the form as the one used for the spatial gluons. Therefore,
the regulator is

Rψ = −(k/̂p− /~p)θ(k2 − ~p2). (4.19)

Now the inversion of the propagator is straightforward. The fermionic contribution to
the flow equation reads

Tr[(Γ
(2)
ψ +Rψ)−1∂tRψ] = Tr

[
(−(k/̂p+ γ4(ωn + gA3

0

σ3

2
)) +m)−1(−k)/̂pθ(k2 − ~p2).

]
(4.20)

Upon taking the trace only the term proportional to /̂p2 survives. The color eigenvalues
of σ3 are {−1, 1}. The result of the trace in Dirac space is 4. The momentum integral is
done analytically, resulting in a factor k3/(6π2), and we are left with the following result
for the trace

Tr[(Γ
(2)
ψ +Rψ)−1Ṙψ] = 4 · 2 4π

(2π)3

k3

3
k2

∞∑
n=−∞

1

k2 + ((2n+ 1)πT + gA3
0/2)2 +m2

=
2k5

3π2

β√
k2 +m2

sinh(β
√
k2 +m2)

cos(ϕ/2) + cosh(β
√
k2 +m2)

, (4.21)

which we can easily incorporate into our flow equation for the effective potential of A0. It
leads to a modification of the critical temperature depending on the current quark mass.
This result is very similar to the one obtained for the Weiss potential. When neglecting

the fermion mass, the only difference is, that the period of the potential is changed. The
Weiss potential has a period of 2π, whereas the potential generated by the fermions has
period of 4π. This is a consequence of the different representation of the gauge group
SU(2), that quarks and gluons live in. Note that fermions in the adjoint representation
would generate a potential having the same periodicity as the gluonic potential.
We rush to add that the incorporation of a chemical potential is not difficult. In

the action, the term stemming from the chemical potential can be absorbed into the
zero component of the Dirac operator. Therefore, we only have to perform the correct
substitution for the Matsubara frequencies. The inclusion of the chemical potential can
schematically be done in the following way:

ψ̄(−i /D)ψ → ψ̄(i /D + iµγ4)ψ ⇒ ωn → ωn + iµ, (4.22)
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where ωn are fermionic Matsubara frequencies.
Including the fermionic flow into the flow of the Polyakov loop potential is not difficult,

we merely have to add the fermionic contributions. In our truncation we choose the quarks
not to be coupled to the gluon sector, but to only include the effect the quarks have on
the gauge sector. Therefore, the flow equation schematically reads:

∂tV = Tr[(Γ
(2)
A +RA)−1ṘA] + Tr[(Γ

(2)
ψ +Rψ)−1Ṙψ] (4.23)

The first part of the flow equation can now be written as in Sec. 3.1, such that the flow is
precisely the one given in eq. (3.29), plus the contribution stemming from the fermionic
term. This contribution, we call it V̇ψ, to the flow can be computed analytically and
we can absorb it into the flow of the Weiss potential V⊥. Therefore, we simply shift
∆Ṽ = ∆V + Vψ and redefine Ṽ⊥ = Vψ + V⊥. Upon renaming the potentials, we are left
with the flow equation for the effective potential

∂k̂∆V̂ = − 1

6π2

(
1 +

η0

5

) g2
k ∂

2
ϕ (V̂⊥ + ∆V̂ )

1 +
g2k
k̂2
∂2
ϕ (V̂⊥ + ∆V̂ )

. (4.24)

As in the calculation of the Polyakov loop in pure gauge theory, we need to specify
the running gauge coupling as input. It is here, where the modifications of the YM
coupling, discussed in the previous section come into play. Of course, we have to make
sure that there is no double counting of contributions, as the fermions already have an
effect on the effective potential via the fermion determinant introduced in the flow. But
the contribution of the quarks to the running coupling are an effect, that is certainly not
included by including the determinant, this can be seen upon considering the diagrams
contributing to the flow of the gauge coupling. The coupling we employ is almost the
same as the coupling depicted in Fig. 3.5, except for the mid-momentum regime, where
the influence of the quarks reduces the coupling strength, as found in the previous section.

4.2.2 Results

The calculation of the flow of the effective potential V̂eff in the presence of dynamical
quarks is very similar to the computation in Chap. 3. Therefore, we discuss only the
changes induced by the quarks.

First of all the quarks generate an additional potential V̂ψ,k̂. Fig. 4.14 shows the result
for various values of the cut-off scale on the left panel. On the right panel we show
the difference induced by the quark mass. We observe, that the potential V̂ψ,k̂ gradually
builds up during the flow and that it is stronger, i.e. more deconfining, for smaller quark
masses.

The phase transition is shown in Fig. 4.15 for various fermion masses on the left panel.
We nicely see, that now instead of a phase transition, we get a crossover, as it is expected.
In a theory with dynamical fermions, the Polyakov loop is strictly speaking not an order
parameter, but we can still use it to define a transition temperature by the maximum
of the susceptibility of the Polyakov loop. We observe, that for larger quark masses, the
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Figure 4.14: The potential generated by the fermions for different values of the cut-off
scale (left). For fixed cut-off scale and varying quark mass (right).

transition becomes steeper. We conclude that for mψ →∞ we recover the second order
phase transition that we got in pure gauge theory.
The resulting crossover temperature as a function the fermion mass is displayed in

Fig. 4.15 on the right panel. We nicely see, that for mψ → ∞ we recover the transition
temperature, that we found in the previous chapter.
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Figure 4.15: The crossover for various quark masses (left). The crossover temperature as
a function of quark mass(right).
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4.3 Relation Between Confinement and Chiral
Symmetry Breaking

In the previous sections we focused on computing the order parameters for confinment
and chiral symmtry breaking directly. Now we want to establish a relation between the
two. As both phenomena are generated in different sectors of QCD, this is of course not a
simple task and no analytical proof linking the two corresponding transition temperatures
has been found.

Recently a relation between the two has been proposed by Gattringer [134] in a ground-
breaking article, finding a connection between the dressed Polyakov loop and the dual
chiral condensate on the lattice. While this is no direct relation between the two physical
phenomena, it is worth exploring this relation.

In Chap. 3 we showed that not only the expectation value of the Polyakov loop
is an order parameter for confinement, but also the Polyakov loop evaluated with the
expectation value of the gauge field. With the same arguemen, it follows immediately
that any observable which transforms non-trivially under center transformations, serves
as an order parameter of confinement. This has been exploited in [134], and to full extend
in [135, 136] for devising other order parameters for confinement. It has been shown in
[134] how to relate the spectral properties of the Dirac operator to the expectation value
of the Polyakov loop. In [137] the dual chiral condensate has been defined, and it has
been shown that it also relates to the expectation value of the Polykov loop. A further
generalisation has been put forward in [135, 136]. There it has been proven that any
function f(λ) of the spectral values of the Dirac operator serve as order parameter of
confinement, if integrated over all possible fermionic boundary conditions and spectral
values. Here we provide a shortened version of the arguments.

Within an fRG approach using a model of QCD similar to the model used in Chap. 4.2
we compute observables for confinement and chiral symmetry breaking. We can and have
extended the model in various directions, including the effects of the quark dynamics on
the gluons, which give additional contributions to the dual density. We were also able
to relate the dual density to the Polyakov loop, which is also nicely reflected by the
numerical results, giving a numerical check of the analytic findings.

Phase transformed fermions

Let us first give an introduction into the formalism of phase transformed fermions. The
key to our results are the different transformation properties of fermion fields and gauge
fields under center transformations. While a center transformation is a symmetry trans-
formation of the gauge sector, the periodicity properties of the fermionic field changes
upon applying the gauge transformation eq. (2.33). We deduce for the gauge transformed
fermion field ψU = Uψ,

ψU(t+ β, ~x) = −zψU(t, ~x) , with β =
1

T
, (4.25)
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for fermions with anti-periodic boundary conditions ψ(t+β, ~x) = −ψ(t, ~x). Uz are center
transformations.
The question arises how we can use eq. (4.25) for a construction of observables that

are sensitive to center transformations. This is easily done by considering more general
boundary conditions for the fermion fields. It leads to the definition of phase transformed
fermion fields. The defining property is given by the generalised boundary condition

ψθ(t+ β, ~x) = −e2πiθψθ(t, ~x) (4.26)

with θ = 0 reproducing the standard antiperiodic boundary conditions of fermions in
thermal field theory. It includes eq. (4.25) with the center phases z = 1e2πiθz . In SU(2)
the center elements are 12 , −12 and hence θz = 0, 1/2, in SU(3) the center elements are
13 , e

2πi/313 , e
4πi/313, and hence θz = 0, 1/3, 2/3 for θ ∈ [0, 1).

The boundary condition (4.26) is easily implemented by

ψθ(t, ~x) = ei2πθt/βψθ=0(t, ~x) with ψθ=0 = ψ, (4.27)

where ψ obeys the standard antiperiodic boundary conditions for fermions, with ψ(t +
β, ~x) = ψ(t, ~x). Using this property, (4.26) is obviously fulfilled.
We can express an arbitrary function f of the Dirac operator i /D standing between

phase transformed fermion fields in terms of antiperiodic fermion fields by means of the
identity

ψ̄θf(i /D)ψθ = ψ̄f(i /D − 2π
θ

β
γ0)ψ (4.28)

With the use of this identity, we can write down an action for the phase transformed
fermions. We choose a standard kinetic term for fermions. The action is then given by

SD[ψθ, ψ̄θ, A] =

∫
d4xψ̄θ(i /D +m)ψθ =

∫
d4xψ̄(i /D − 2π

θ

β
γ0 +m)ψ (4.29)

Next we define the generating functional of phase transformed fermions. For brevity, we
will use the collective variable Φθ = (A, c, c̄, ψθ, ψ̄θ) with the appropriate source J in our
definition:

Zθ[J ] =

∫
DΦ exp(−SD[Φ] +

∫
d4xJ · Φ). (4.30)

The action in eq. (4.29) is the Dirac action with an imaginary chemical potential µ =
2πi θ/β. Imaginary chemical potential is of interest for lattice simulations, as the fermion
determinant becomes real and importance sampling is still viable. With lattice simula-
tions at imaginary chemical potential and an analytic continuation of the results towards
real chemical potential, one aspires to gain access to the QCD phase diagram. The sit-
uation is depicted in Fig. 4.16, where also the Roberge-Weiss (RW) discontinuity [138],
ending in an endpoint is depicted. It is still unclear if and how the Roberge-Weiss discon-
tinuity merges with the chiral phase transition. The Roberge-Weiss discontinuity only
arises in the deconfined phase, where center symmetry is broken. For a discussion of this
point see Ref. [139]. Let us analyse how this discontinuity arises in our theory of phase
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transformed fermions. If θ takes one of the center values θz, we can define ψUz = ψθz
with Uz as defined in eq. (4.25). We conclude with∫

ψ̄θz
(
i /D(A) +m

)
ψθz =

∫
ψ̄
(
i /D(AU

†
z ) +m

)
ψ , (4.31)

that center phases θz can be absorbed in center transformations of the gauge field. As we
know from the investigation of the gauge sector of QCD center symmetry is a symmetry
of the gauge sector. Therefore, the action has the Roberge-Weiss periodicity [138], see
also [139],[140], this is also a manifest symmetry of the generating funtional at vanishing
source:

Zθ[0] = Zθ+1/Nc [0] . (4.32)

This symmetry can be broken only in a non-center symmetric (deconfining) ground state,
leading to the Roberge-Weiss discontinuity. We will come back to this point later, as a
symmetry of the generating functional is also a symmetry of the effective action, we
have to make sure that this symmetry is implemented in the flow equation. We will
make sure that our flow, which we will use to compute the dual observables, respects the
Roberge-Weiss periodicity.

Now we are in a position to define the flow of the phase transformed fermions. More-
over, this enables us to define order parameters for the confinement phase transition, such
as the dual density, that we define in the next subsection. These quantities will allow us
to analyse the relation between the chiral and the deconfinement phase transition.

T
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m
p
e
r
a
t
u
r
e

Real µ2

QGP

Hadron Gas

Endpoint RW

Chiral Transition
Roberge Weiss Transition

µ  = 0

Figure 4.16: The phase diagram in the T, µ2 plane taken from [139]. Lattice simulations
are possible in the µ2 ≤ 0 halfplane, physical results in the region of µ2 ≥ 0
have to be inferred by an analytic continuation.
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4.3.1 Dual Observables

Before studying the flow of the dual density and other dual observables, let us analyse
some of the general properties of these.
From eq. (4.26) it is obvious, that the theory is periodic in θ, therefore, general ob-

servables Oθ = 〈O[ψθ]〉 can be represented in a Fourier decomposition,

Oθ =
∑
l∈Z

e2πilθOl . (4.33)

This implies that the dual observables Ol transforms under a gauge transformation in the
center Uz into zlOl. Hence, in the center symmetric phase every moment Ol with l ∈ Z
and l mod Nc 6= 0 has to vanish, as it is proportional to a sum over center elements z,∑

z∈Z

zl = Nc δl mod Nc,0 . (4.34)

The above observables Oθ can be either evaluated in QCD with anti-periodic fermions ψ,
or in QCDθ with fermions ψθ having θ-dependent boundary conditions. The first case was
considered in previous work [134–137, 141], in which case the Oθ constitute observables in
the physical theory as do the dual observables Ol. Note that the definition Lθ = e2πiθ〈L〉
reflects the boundary condition eq. (4.26). It fits into the definition of dual observables
and it is a natural extension of the Polyakov loop defined before.
In this work we mainly concentrate on the case of QCDθ. Where we can interpret the

phase as an imaginary chemical potential, µ = 2πi θ/β as explained above. Then, the
observables Oθ constitute observables in different theories differentiated by the boundary
conditions or imaginary chemical potential.
We conclude that the dual observables Ol with l mod Nc 6= 0 only vanish if QCDθ

is in the center symmetric phase for all boundary conditions. Within the quenched
approximation this reduces to the first case, as there are no dynamical quarks, therefore
there is no imaginary chemical potential discriminating the theories.
We shall also show that the physical transition temperature Tc(θ = 0) is a lower bound

for Tc(θ). Thus the dual phase transition temperature T̃c, derived from an observable Ol,
is expected to be identical with the physical one. In summary, the moments Ol with l
mod Nc 6= 0 are order parameters for the confinement phase transition in the physical
theory in both approaches. In particular the first moment is an order parameter for all
Nc,

Õ =

∫ 1

0

dθ e−2πiθOθ . (4.35)

At imaginary chemical potential Oθ obeys the RW-symmetry if the source term of the
generating functional vanishes. Then it is easy to see that the dual observable vanishes:∫ 1

0

dθ e−2πiθOθ =

∫ 1/Nc

0

dθ e−2πiθOθ
Nc−1∑
k=0

zk = 0, (4.36)
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where we used Oθ+θz = Oθ and the fact that the sum over all center elements z vanishes.
Therefore, the dual observables at vanishing source vanish identically. In turn, a non-
vanishing current JA for the gauge field breaks the RW-symmetry, and leads to Ol 6= 0
for l mod Nc 6= 0. This leads us to a simple and easily accessible confinement order
parameter in QCDθ, the dual density:

ñ[φJ ] :=

∫ 1

0

dθ e−2πiθnθ[φJ ] (4.37)

with φJ = 〈φ〉J , i.e. the field expectation values are evaluated at a non-vanishing source
JA 6= 0. The density nθ is the derivative of the partition function w.r.t. the chemical
potential 2π θ/β,

nθ[φJ ] =

∫
d4x 〈ψ̄γ0ψ〉θ =

β

2π
∂θ lnZθ[J ] . (4.38)

The integration over space-time is equivalent to evaluating the generating functional in
momentum space at p = 0.

Flow of the dual observables

Let us turn to computing the dual observables using functional methods. In [141] it has
been shown how to compute the dual chiral condensate from functional methods, i.e.
from Dyson-Schwinger equations (DSE). We want to use another approach, the fRG. Its
advantage is that it provides expressions for the renormalised effective action. Conse-
quently renormalisation problems as present within the lattice computations as well as
the DSE computation, are absent here. The central quantity of the fRG is the effec-
tive action, consequently, we want to relate the dual observables to the effective action.
Then the above expectation values are taken at fixed φJ = 〈φ〉J . At the example of the
dual density, we illustrate the procedure. We observe, that nθ is trivially related to the
effective action Γθ[φJ ] = J · φJ − lnZ[J ]:

nθ[φJ ] =
β

2π

∂

∂θ
lnZθ[J ] =

β

2π

∂

∂θ
(lnZθ[J ]− J · φJ) = − β

2π

∂

∂θ
Γθ[φJ ]. (4.39)

For the dual density we can perform an integration by parts, simplifying the equation
significantly:

ñ[φJ ] = − β

2π

∫ 1

0

dθe−2πiθ ∂Γθ[φj]

∂θ
= −iβ

∫ 1

0

dθe−2πiθΓθ[φJ ]. (4.40)

We used the fact that the effective action is periodic in θ: Γ1[φJ ] = Γ0[φJ ]. In other words,
the dual density is proportional to the first moment of the grand canonical potential at
imaginary chemical potential.

Similarly, we find for the dual chiral condensate an expression in terms of the effective
action:

σ̃[φJ ] = −
∫ 1

0

dθ e−2πiθ∂mΓθ[φJ ] . (4.41)
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∂tΓk[φ] = 1
2 − − + 1

2

Figure 4.17: Functional flow for the effective action. Filled circles denote fully dressed
field dependent propagators. Crosses denote the regulator insertion ∂tR.
This flow includes also the contributions of the mesons, indicated by the
dashed lines.

Eq. (4.40) links the dual density ñ to the grand canonical potential, therefore, we can
easily read off its growth at high temperatures. The integrated θ-dependence is expected
to be leading order in T . The grand canonical potential rises with T 4, and hence the
dual density ñ rises with T 3.
Having all dual observables expressed in terms of the effective action, it is simple to

compute the dual observables by means of the flow equation. We get a flow of the
dual observables by applying a scale derivative on the dual observables. The boundary
condition of the flow is simply that the dual observable vanishes. Diagrammatically the
flow of the effective action is shown in Fig. 4.17
Remember that the effective action retains all the symmetries of the generating func-

tional. The source term is related to the effective action by J = δΓθ[φ]/δφ|φ=φJ and
φ̄θ = φJ=0. Therefore, the dual density evaluated at the expectation value of the fields
vanishes ñ[φ̄θ] = 0, as explained above.
The flow of the dual density is given by

∂tñ[φJ ] = −iβ
∫ 1

0

dθe−2πiθ Γ̇θ[φJ ]. (4.42)

Note that ∂tñ[φJ ] is directly proportional to the flow depicted in Fig. 4.17.
We emphasise that this is an important property as the direct use of the flow for

the effective action is least sensitive to the approximations involved. Moreover, the dual
density guarantees the maximal disentanglement of the different field sectors as is obvious
from the diagrammatic representation Fig. 4.17: the explicit change of introducing θ will
only affect the fermionic loop, as the Matsubara freuqencies are shifted by µ = 2πβθ.
As we shall see, this can be seen as a minor correction to the θ = 0 behaviour. Then,
the back-coupling to the gauge field loop will be sub-leading. The correction from the
ghost loop is even more suppressed, as there is no direct (classical) coupling between
quark and ghost. We conclude that in a first, but already good, approximation, the
dual density is dominated by the quark loop. This has far-reaching consequences. The
quark propagator has only a mild momentum dependence, and is in leading order is only
sensitive to the chiral properties of the theory. In other words, if the dual condensate
shows a cross-over or a phase transition, it can only be induce by the chiral cross-over
or phase transition. Therefore we can already deduce that, at vanishing real chemical
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potential, the confinement-deconfinement phase transition can only manifest itself in the
dual density at the chiral critical temperature or below. Our explicit computation will
show that this is indeed the case. We rush to add that in the case of a cross-over this
strictly speaking only implies, that one of the possible definitions of the confinement-
deconfinement temperature has this property.

We provide a further heuristic argument why at vanishing chemical potential this
tightly relates the chiral and the confinement-deconfinement transition Tc,χ and Tc,conf

respectively. To that end we concentrate on the Polyakov loop. In pure Yang-Mills
with Nc = 2, 3 the transition temperature Tc,conf is roughly 3/2 of Tc,conf in QCD with
dynamical quarks. However, the chiral transition suppresses the quark loops and reduces
the dynamics to that of pure Yang-Mills. Consequently the confinement-deconfinement
transition has to follow at least closely to the chiral transition.

The flow representation allows to deduce some interesting properties of the dual den-
sity. First we show that our approach is manifestly invariant under the Roberge-Weiss
transformation. Furthermore, we show that the dual observables can be related to the
Polyakov loop, showing a close relation of these to confinement.

For the analytical arguments it is sufficient to use constant mean gauge field config-
urations A0 in the Cartan subalgebra. For example, for Nc = 3 we have Cartan fields
ϕ3 = βgA3

0 and ϕ8 = βgA8
0, that we encountered already in the computations of the de-

confinement phase transition in SU(3). The θ-dependence of the effective action Γ[φ] has
its roots in the summation over fermionic Matsubara frequencies that we encounter in the
zero component of the Dirac operator and the imaginary chemical potential iD0− 2πTθ:

iD0 − 2πTθ = ωn + gAa0T
a − 2πTθ1Nc . (4.43)

Most of the θ-dependence can be reabsorbed in a θ-dependent gauge field A0(θ). Details
of the calculation can be found in App. C.2. After some algebra we are led to

(iD0 − 2πTθ)aa = 2πT

(
n+

1

2
+

1

4π
Φa −Ncδa1θ

)
, a = 1, ..., Nc . (4.44)

were Φa are the eigenvalues of the matrix 2βgA0(θ) and the summation convention is
not applied. In the Cartan there are no color matrices with non-vanishing off-diagonal
components, thus there are also no off-diagonal components of the Dirac operator zero
component in color space. For Nc = 3 we have Φ[ϕ̂] having diagonal components

Φ1 =
ϕ̂8√

3
+ ϕ̂3 , Φ2 =

ϕ̂8√
3
− ϕ̂3 , Φ3 = −2

ϕ̂8√
3
, (4.45)

where βgA0(θ) = ϕ̂3τ
3 + ϕ̂8τ

8 with Gell-Mann matrices τ3, τ8. The ϕ̂ are defined to be
invariant under Roberge-Weiss transformatinons, they are given by

ϕ̂3 = ϕ3 − 3(2πβ)θ and ϕ̂8 = ϕ8 −
√

3(2πβ)θ. (4.46)

Inserting the ϕ̂ in eq. (4.44) we get back the original parameterisation of the fermionic
Matsubara frequencies. The ϕ̂, and hence the Φa, are invariant a Roberge-Weiss trans-
formation, i.e. under shifts of the phase by a center phase and accompanied by shifts of
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the gauge fields:

θ → θ + θz , ϕ3 → ϕ3 + 3(2πβ)θz , ϕ8 → ϕ8 +
√

3(2πβ)θz. (4.47)

The latter is a center transformation U †z on the gauge field, see eq. (4.31) and leaves the
action invariant. The shift of the full Matsubara frequencies eq. (4.44) under the above
transformation can be undone with an appropriate shift of n. We conclude that any
expansion scheme based on the field variables ϕ̂ is form-invariant under θ → θ+ θz. The
same holds true for the observables Oθ[φ̄θ] that are also invariant under this transforma-
tion. Consequently, the dual observable vanishes Õ[φ̄θ] = 0. In turn, observables Õ[φ]
with θ-independent gauge field background ϕ are order parameters for confinement as
such a background explicitly breaks the RW-symmetry. In particular this includes Õ[φ]
with ϕ = ϕ̄ = ϕ̄θ=0 and ϕ = 0.
Simple observables Õ[φ] follow directly from the vertices Γ(n)[φ] in QCDθ. This in-

cludes the dual density eq. (4.40) as well as the dual chiral condensate with Oθ[φJ ] =∫
d4x 〈ψ̄θψθ〉J for either ϕJ = ϕ̄θ=0 and ϕJ = 0. The first case with ϕ̄ relates to the

lattice computations in QCD of dual order parameters [134, 135, 137]. The latter choice
has been used implicitly in [141, 142]. An even simpler observable is the dual quark mass
parameter M̃ with Mθ[φ] ∼ Tr Γ

(2)

ψ̄ψ
[φ](p = 0). The specific choice Mθ[φ̄θ] is directly

related to the pion decay constant fπ in QCDθ. A further prominent example is the
modified Polyakov loop variable Lθ = e2πi θL,

L−θ[ϕ] =
1

Nc

Nc∑
i=1

e2πi( 1
4π

Φi[ϕ̂]+Ncδi1θ) . (4.48)

with Lθ = 〈Lθ〉. L−θ is invariant under θ → θ + θz at fixed ϕ̂, and hence L̃[φ̄θ] = 0.
However, L̃[ϕ̄] = L[ϕ̄] simply is the Polyakov loop variable introduced in [23, 56] as an
order parameter for confinement.
The representation of the Polyakov loop in eq. (4.48) leads to an interesting observation:

in phase-quenched QCDθ we are left with the explicit θ-dependence in the Matsubara
frequencies eq. (4.44). Thus, any observable Õ in eq. (4.35) obeys

Õ[φ] =

∫ 1

0

dθ e−2πiθOθ[0]L[ϕ] = Õ[0]L[ϕ] , (4.49)

for θ-independent gauge field background ϕ and vanishing quark and mesonic back-
grounds. In fully dynamical QCDθ the factorisation eq. (4.49) only holds approximately.
For general ϕθ such as ϕ̄ in QCDθ this factorisation does not happen. However, in
unquenched QCD we can use eq. (4.49) to measure the importance of the respective
quantum fluctuations with

∆O =
Õ
Õ[0]

− L[ϕ̄] , ∆O[ϕ] =
Õ[φ]

Õ[0]
− L[ϕ] , (4.50)

for O = n or O = L. For the latter case we have ∆L̃ = L̃−L[ϕ̄] and ∆L̃[ϕ̄] = L̃[ϕ̄]−L[ϕ̄].
We emphasise that the relations eq. (4.49) and eq. (4.50) are valid in both approaches
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with and without imaginary chemical potential. Without chemical potential we have
∆n = ∆n[ϕ̄].

4.3.2 Approximation

We solve the flow equation for the effective action Γ within an approximation that is very
similar to the one used in Chap. 4.1. For our study of two flavour QCD in the chiral limit,
we solve the flow equation for the effective action Γ by combining results for the Yang-
Mills part of QCD [56, 71], as well as the matter part [18, 50, 63]. The two sectors are
coupled by the dynamical quark-gluon interaction. This setting incorporates the confining
properties of QCD [56] via the full momentum dependence of gluon and ghost propagators
[71]. The results for pure Yang-Mills agree quantitatively with the corresponding lattice
results. In the matter sector mesonic degrees of freedom are dynamically included [18,
50, 63]. Such a treatment of the matter sector already provides quantitatively reliable
results for the meson spectrum, see e.g. [63]. It has been also successfully implemented
for the phase diagram of one flavour QCD at finite chemical potential [18].

In this approximation the flow of the density is governed by the equation

ṅθ[φJ ]

T 3
=

8v3

3

(
k

T

)4
(

1√
k2+m2

σ

(
1

2
+n

(θ)
B (mσ)

)
+

(N2
f−1)√

1+m2
π(

1

2
+n

(θ)
B (mπ)

)
− 2NcNf√

1+m2
q(θ)

(
1

2
−n(θ)

F (mπ)

)+
ṅθ,Y M [φJ ]

T 3
, (4.51)

where nB and nF denote the standard bosonic and fermionic distribution functions, re-
spectively. Note that mπ and mσ are θ-dependent. While the fermion loop depends
explicitly and implicitly on θ, the meson and gluon loop depend only implicitly on θ
through fermionic contributions to their propagators. We have indicated the contribu-
tion from the gauge sector by the last term.

In order to compute the dual density, we expand the chiral order-parameter potential
U(Φ2) in a power series of Φ2 up to order Φ4 and drop all higher terms, i. e. U(Φ2) =
U0 +(1/2)m2Φ2 +(λ/4)Φ4. Consequently, the expansion coefficients of the (chiral) order-
parameter potential depend on θ as well. The RG flow equations for these couplings are
straightforward generalizations from the RG equations in the case θ = 0 which can be
found elsewhere, see e. g. Ref. [18].

The gluonic contributions to the flow of the dual density is given by the the first two
terms in Fig. 4.17. When neglecting backreactions of the quarks on the gluons, the
integrated flow of these terms leads along the lines of [56] to the effective potential of the
Polyakov loop. Since we evaluate our equations at the expectation values of the Polyakov
loop, it will yield the value of the potential at the expectation value of the Polyakov loop.
As we know, the potential obeys Roberge-Weiss symmetry manifestly. Therefore, upon
integrating over the phase θ, this contribution to the dual density vanishes.

Including the vacuum polarisation gluons, we get a non-vanishing contribution, if we
evaluate the vacuum polarisation for θ-independent φ. The inclusion of the vacuum po-
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larisation modifies the gluon propagator, we split the propagator into the YM propagator
in Landau gauge and an additional term. Thereby putting us into a position to split the
gluonic contribution in the well-know vanishing part explained above and a non-vanishing
part. The splitting of the propagator is similar to Chap. 4.2, c.f. eq. (4.12) and (4.13).
The difference in this section is that the chemical potential is now imaginary and we work
at finite temperature. Using the 3D optimised regulator , we obtain for the quark loop
contribution [18]

ηq(mψ, t̃, µ̃) =
Nf√

1 +m2
ψ

1− 1

1 + e

√
1+m2

ψ
−µ̃

t̃

− 1

1 + e

√
1+m2

ψ
+µ̃

t̃

 4

3

g2

(4π)2
, (4.52)

eq. (4.14) is the limiting case of this equation vanishing for vanishing temperature. mψ =
hκ denotes the dimensionless quark mass, which is a parameter that varies during the
flow. We observed before, that we can identify the chemical potential here with the phase
θ via the relation µ = i2πβθ.
Now we want to introduce our truncation of gluonic part of the flow equation that

allows for a splitting of the contributions. Therefore we start with the 4D optimised
regulator for Landau gauge YM, given by

RYM,k =
(

Γ
(2)
YM,k(k

2)− Γ
(2)
YM,k(p

2)
)
θ(k2 − p2), (4.53)

this cut-off entails also a cutting of the Matsubara frequencies. Then the inverse propa-
gator is, c.f. also eq. (4.12) for the full expression of the propagator,

Γ
(2)
YM,k(p

2) +RYM,k =
[
Γ

(2)
YM,k(k

2)
]
θ(k2 − p2) + Γ

(2)
YM,k(p

2)θ(p2 − k2). (4.54)

The scale derivative of the cut-off would now be consist of various contributions. We
want to resort to a simpler approximation that has proven to give good result. The
truncation being that we identify the scale dependence with the momentum dependence
∂tΓk(p) ' ∂tΓ0(k) such that the scale-derivative of the propagator is simply given by

∂tRYM,k = ∂t

(
Γ

(2)
YM,0(k2)

)
θ(k2 − p2). (4.55)

Therefore, we have eliminated the momentum dependence of the propagator in the flow,
∂t

[
Γ

(2)
YM,0(k2)

]
is related to the quark loop contribution after projecting onto the dressing

function is given by
∂tΓ

(2)
YM,0(k2)

ZA
∼ ŻA
ZA

= ηA = ηYM + ηA,q, (4.56)

where ZA is the dressing function appearing in Γ
(2)
YM,0. Then the first contribution together

with the ghost term results in the Polyakov loop potential, as explained above and gives
no contribution to the dual density. In contrast, the second term gives a non-vanishing
contribution to the dual density. However, we found that the dual density is not very
sensitive to this modification, the deviations are at the percent level.
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4.3.3 Results

In Fig. 4.19 the temperature dependence of two order parameters for confinement are
shown, namely the Polyakov loop variable L[ϕ̄] and the dual density ñ[φ̄]. The crossover
temperature Tconf is determined by the peaks in the respective T -derivatives χL and χdual.
Interestingly the factorisation eq. (4.49) works quantitatively for the dual density in the
full theory: ñ[φ̄]/ñ[0] and L[ϕ̄] agree on the percent level. This is shown in Fig. 4.18.
We have checked further order parameters such as the dual pion decay constant. We
find that the crossover temperatures extracted from the dual density, the dual pion decay
constant and the Polyakov loop agree within a few MeV: Tdual ≈ Tconf ≈ 178MeV. This
provides further support for the quantitative reliability of the present approximation.

In Fig. 4.19 we also show the pion decay constant fπ. It is proportional to the quark
mass parameter Mθ evaluated at φ̄θ, and is an order parameter for the chiral phase
transition. For T → 0, fπ approaches 90MeV. For T > Tχ ≈ 181MeV the pion decay
constant tends to zero and chiral symmetry is restored. We observe a second order phase
transition, and the critical exponents such as ν signal the O(4)-universality class. Most
importantly, the chiral phase transition and the confinement crossover temperature agree
at vanishing chemical potential. We have also shown the behaviour with phase and
temperature of the pion decay constant and the density in Fig. 4.22.

An evaluation of the dual chiral condensate and the dual quark mass parameter in
QCDθ for vanishing gauge field background ϕ = 0 has been implicitly performed in [141]
and [142] respectively. Evaluated at both, 0 and ϕ̄, we find the expected periodicity of M̃
in θ → θ+1, and no RW-symmetry. For θ = 1/2 it can be shown analytically that it grows
with T 1/2 for large T . In turn, for θ = 0 and ϕ = ϕ̄θ=0 it agrees with fπ and vanishes
for large T , see Fig. 4.19. Below the chiral phase transition temperature Tχ the mass
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Figure 4.18: Deviation from the factorisation.
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4 QCD phase diagram
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Figure 4.19: The pion decay constant fπ(T )/fπ(0), the dual density ñ(T )/ñ(∞), and the
Polyakov loop L[ϕ̄](T ) as functions of temperature, χL = ∂TL, χdual = ∂T ñ.

parameter M̃ is a smooth function of θ. However, a box-like behavior emerges above Tχ,
see also [142]. For our calculation, this is shown in Fig. 4.20. We note, thatMθ[φ] is an
expansion parameter of the effective action which only signals chiral symmetry breaking
for φ= φ̄θ.

0 1/30 2/30 3/30 4/30 1/6
θ

0

0.2

0.4

0.6

0.8

1

f π(θ
)/f

π(1
/6

)

T = 160 MeV
T = 180 MeV
T = 185 MeV
T = 210 MeV

Figure 4.20: Pion decay constant fπ for various temperatures
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4.3 Relation Between Confinement and Chiral Symmetry Breaking
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Figure 4.21: Chiral (Tχ) and confinement temperature (Tconf) as functions of temperature
and boundary angle θ. The width of χL = ∂TL is displayed as a shaded area.
The dots indicate the endpoints of the confinement RW-phase transitions.

In Fig. 4.21 we show the phase diagram of QCDθ. The confinement and the chiral
temperatures lie close to each other for all imaginary chemical potentials. Their value
at θ = 1/6 is the endpoint (TRW, θRW) ≈ (210MeV, 1/6) of the corresponding RW phase
transitions shown as a vertical line at θ = 1/6 in Fig. 4.21. Our results compare well
to the lattice results [143, 144]. In the PNJL-model [96, 104] the lattice results have
been reproduced by adjusting model parameters connected to an eight quark interaction
[105]. In our approach to full QCDθ coinciding temperatures result from the interplay
of quantum fluctuations and are not adjusted by hand. An estimate of the correspond-
ing quantum fluctuation within a Polyakov–quark-meson model also leads to coinciding
critical temperatures at real chemical potential [106]. These results suggest that the dif-
ferences between Tconf and Tχ at both, real and imaginary chemical potential, are mainly
due to mean field or large Nc approximations. The relevance of this observation for the
quarkyonic phase proposed in [19] will be discussed elsewhere.

In summary our study suggests that the confinement and chiral critical temperatures
Tconf and Tχ are dynamically related and agree within the error bars. At present, we
extend our work to real chemical potential. This may help to shed some light on the
current debate concerning lattice simulations at finite chemical potential.
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4 QCD phase diagram

Figure 4.22: The density and the pion decay constant.
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5 Dynamically Adjusted Degrees of
Freedom

“All roads lead to Rome”

5.1 Motivation

The treatment of a physical problem is generally simplified if one chooses an appropri-
ate language to describe the problem. If e.g. a charge distribution in electrodynamics
is spherically symmetric, the computations are greatly simplified, upon using spherical
coordinates.

At this point, we want to give a summary of the methods applied to choose the correct
degrees of freedom and introduce a framework within which the appropriate degrees of
freedom can be selected dynamically.

In the context of this work there are particularly two cases in which choosing the right
degrees of freedom is essential for an adequate treatment of the theory. The first we
encountered was the formulation of QCD in Polyakov gauge in terms of the Polyakov
loop variable. The second was in the computation of the QM model, where we bosonised
the fermions.

In the case of the Polyakov variable we saw, that it is important to change the mathe-
matical description of our degrees of freedom in the right instance. Thereby we can cover
the essential physics while avoiding unphysical singularities stemming from parametrisa-
tion artefacts. Recall that the Polyakov loop was defined by

P(~x) = P exp

(
ig

∫ β

0

dx0A0(x0, ~x)

)
. (5.1)

In the end we choose a parametrisation that could interpolate between a formulation in
A0 and P . The close we got to the confining regime, the more we had to take fluctuations
of P into account. At the beginning of the flow, where we started with a deconfining
potential, we used a flow essentially of A0.
On the contrary, for the QM model, we needed to modify our degrees of freedom

because we dealt with a condensation phenomenon. There quarks formed bound states
and we had to deal with a new physical situation, with new observables that we had to
take into account, via the dynamical hadronization procedure. We added the bosonic
field Φ to our theory and identified it with two quarks.

Φ = ψ̄ψ (5.2)
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5 Dynamically Adjusted Degrees of Freedom

A finite expectation value of Φ ammounted to a finite value of the chiral condensate,
which is nothing but the condensation of quarks.
A model to demonstrate how the dynamical choice of degrees of freedom works, that

makes it transparent is the O(N) model. We choose this model because it is quite
well understood and mathematically easier to handle than theories with gauge fields or
fermions. Also, the basic notions can be visualised nicely.

5.2 O(2) Model Intricacies

We specify to the O(2) model because it is easier to write down everything explicitly and
to visualise our results. The extension to an arbitrary number of fields is straightforward.
The classical action of the O(2) model with two fields φ1 and φ2 is given by

S[φ] =

∫
ddx

1

2
∂µφ

a∂µφ
a + V [φaφa] (5.3)

with an unspecified potential V [φaφa]. Obviously this action is symmetric under an
orthogonal transformationR ∈ O(2) of the two field components S[φ] = S[Rφ]. Assuming
a convex potential, we can expand the potential about the minimum and write the action
as a sum of polynomials of the two individual fields, as all directions are equivalent.
With this, we can e.g. do perturbation theory, or solve a flow equation. We do not
expect anything special or problematic to happen.
However, if we assume a non-convex potential, for example V (x) = (x− x0)2, this are

different. This potential is depicted in Fig 5.1. Now we have a continuum of minima

Figure 5.1: Typical shape of a mexican hat potential
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5.2 O(2) Model Intricacies

that are physically equivalent. Picking one of those minima and expanding the potential
about this minimum in terms of the two fields φ1 and φ2, we get an action with two
different fields. In momentum space, it is given by

S =

∫
ddx

1

2

(
p2φ2

1 +m2
1φ

2
1) +

1

2
p2φ2

2 + λ(φ2
1 + φ2

2)2

)
. (5.4)

While this looks like a sensible action, there are some problems that are evident already
in perturbation theory. To see this, let us consider the one-loop 2n-point function with
external legs of only the field φ1 and internal propagators of the field φ2. The propagator
of φ2 is simply 1/p2 and the vertex is momentum-independent. Now consider the limit
where all external momenta vanish. There are n "2" propagators, they are the only
structures carrying momentum, thus the momentum structure of this 2n-point function
is simply ∫

ddp

(
1

p2

)n
. (5.5)

As long as 2n > d−1, this 2n-point function is divergent. This divergence is carried over
into the flow equation. This problem can be circumvented by considering only the flow
of correlation functions in which this divergence is cancelled out. It would however be
nice, to have a formulation of the flow equation in terms operators that do not exhibit
these divergences.

Let us first find out, what goes wrong when treating the theory the way we did and
where the divergence arises. Obviously the divergence arises because the only momentum
structure in the correlation function under consideration is the massless propagator of
the field φ2. Such a structure, however, is natural in a theory with spontaneously broken
symmetry, the corresponding particles are the Goldstone bosons. An expansion around
one of the minima of the mexican hat potential in terms of the fields φ1 and φ2 does
not correctly capture the Goldstone physics, because as soon as the perturbations in φ2

direction grow larger, we run up the potential hill again and this field should also acquire
a mass. Therefore, we will introduce a field parameterisation, that is apt to deal with
the Goldstone mode. This will also introduce a momentum dependent vertex, which will
cure the IR divergence, we encountered in the more naive picture before.

A parameterisation of the field, that can correctly describe the Goldstone mode is
written down right away:

Φ = (ϕ+ ρ
1/2
0 ) exp(iϑ/ρ

1/2
0 ), (5.6)

ϕ describes the radial mode, whereas ϑ describes the Goldstone mode. The action is

S =

∫
ddp

1

2

(
p2ϕ2 +m2ϕ2

)
+

(ϕ+ ρ
1/2
0 )2

2ρ0

p2ϑ2 + λϕ4 +
(ϕ+ ρ

1/2
0 )

ρ0

(pµϕ)(pµϑ). (5.7)

It looks much similar to the previous action, but there is an important difference. There
is three boson interaction, which is also momentum dependent. Let us now consider
an 2n-point function with external legs belonging to the radial field ϑ, which plays the
role for φ1 in the former parameterisation. In the loop there are Goldstone propagators,
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5 Dynamically Adjusted Degrees of Freedom

which are of course massless, and radial mode propagators alternating after each vertex.
Therefore, we get n massless propagators and 2n powers of the loop momentum p from
the vertices, such that the momentum structure is∫

ddp

(
1

p2

)n
(p)2n =

∫
ddp. (5.8)

We have arrived at a correlation function, which is now not IR divergent and also captures
Goldstone physics. There is, however, a drawback of the parameterisation. It cannot be
used in the symmetric phase of the theory, as the Goldstone mode ϑ simply does not
exist anymore. Here it is advantageous to resort to the Cartesion formulation.
On these results, we are going to show how to dynamically choose the appropriate

degrees of freedom in an fRG setting.

5.3 Dynamical Parametrisation

The idea of the presented field parametrisation is to work in coordinates that are most
appropriate for the physical situation. If we go back to the mexican hat potential for two
field degrees of freedom, in an O(2) symmetric scalar theory, it is immidiately clear that
this would be best described in terms of a radial and an angular coordinate. Consequently,
this parametrisation is good if we are in the regime of spontaniously broken symmetry.
However, in the regime were the symmetry is restored, this is not a good parameterisation
as explained above.
Therefore, we have to devise a parameterisation that allows us to dynamically choose

the right degrees of freedom. We employ a nonlinear representation of the fields in terms
of the collective variable

Φ = (ϕ+ b)eiϑ/b + (ρ
1/2
0 − b) (5.9)

where ρ0 = Φ∗Φ and we introduced a parameter b that allows for an interpolation between
the appropriate parametrisations in the symmetric and the broken phase. To see this we
consider the limits b→∞ and b→ ρ

1/2
0 :

b→∞ : Φ = (ϕ+ b)(1 + i
ϑ

b
)− b = ϕ+ iϑ (5.10)

b→ ρ
1/2
0 : Φ = (ϕ+ ρ

1/2
0 )eiϑ/ρ

1/2
0 (5.11)

We see that b→∞ corresponds to the appropriate field parametrisation in the symmetric
phase and b→ ρ

1/2
0 is adequate in the case of spontaneously broken O(2) symmetry.

Generically bosonic flows are symmetry breaking, therefore, if we start in the symmetric
phase, we will have to adjust the parameter b during the flow. We will give a suitable
prescription after we discuss the flow.
Since we now adjust the field in the course of the flow, there are modifications induced

by the scale dependence of the fields. For a detailed discussion of these changes, see e.g.
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5.4 Flow of Scale Dependent Fields

[41, 49, 51, 145]. For the case of dynamical hadronisation, the scale dependence of the
field is in a sense quadratic:

Φ̂k = Zkψ̄ψ, (5.12)

where the only scale- (k-) dependence is in the factor Zk. Therefore we get

〈∂tΦ̂k〉 = 〈(∂tZk)ψ̄ψ〉 = (∂tZk)〈ψ̄ψ〉 = ∂t〈Φ̂k〉. (5.13)

With this identity, the flow equation for scale dependent fields can be brought into a form
close to the flow equation we know.

5.4 Flow of Scale Dependent Fields

We want to derive the flow equation for a scale dependent field Φk. The derivation is
similar to the one for the well known flow equation (2.65). Here we only sketch the
differences. Following the same steps that lead us to eq. (2.65), we arrive at

Γk[Φk] = −Wk[J [Φk]] +

∫
JΦk −∆Sk[Φk]. (5.14)

Now we apply a total derivative w.r.t. t = ln(k/Λ) and write this total derivative by
means of the chain rule as a partial derivative w.r.t. t, keeping the mean field Φk = 〈Φ̂k〉
fixed. The other term is a derivative w.r.t. the field Φk, times its scale derivative ∂tΦk.
Analogously to eq. (2.55) we obtain for the scale derivative at fixed mean field

∂t|ΦkW = −1

2
〈Φ̂kṘkΦ̂k〉 − 〈 ˙̂

ΦkRkΦ̂k〉+

∫
J [Φk]〈 ˙̂

Φk〉. (5.15)

From the first term, we can recover the flow equation as we did for a scale independent
field. Assuming, that we can write 〈Φ̇〉 = Φ as in eq. (5.13), the second term can
be rearranged by means of functional derivatives w.r.t. J such that we end up with
〈 ˙̂
ΦkRkΦ̂k〉 = Gδ(Φ̇k)/δΦk + ΦkRkΦ̇k

The second term arising from applying a scale derivative on the RHS of eq. (5.14) is
quickly computed. We arrive at

Φ̇k
δ

δΦk

(
−Wk +

∫
JΦk −∆Sk

)
= −Φ̇k

δW

δJ

δJ

δΦ
+

∫
Φ̇k

(
J + Φk

δJ

δΦk

)
−Φ̇kRkΦ. (5.16)

Using δW/δJ = Φ, we observe, that only the terms
∫

Φ̇kJ − ΦkRkΦ̇k survive.
Seeing that most of the terms cancel, we are left with the flow equation for the effective

action of scale dependent fields

Γ̇k + Φ̇k,i
δΓk
δΦk,i

=
1

2
Tr

1

Γ
(2)
k +Rk

Ṙk + Tr
δΦ̇k,i

δΦk,j

(
1

Γ
(2)
k +Rk

Rk

)
ij

, (5.17)

where the trace runs over all internal indices and includes the momentum integration.
We accounted for the possibility, that there is more than one scale dependent field by
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5 Dynamically Adjusted Degrees of Freedom

including the indices Φi. For the O(2) theory that we are going to discuss, the field has
two components: Φ = (ϕ, ϑ). We observe right away, that this flow equation comprises
also the standard flow equation for constant fields, simply be noting that Φ̇ vanishes for
constant fields.
To compute δΦ̇/δΦ we need explicit expression for the collective variable Φk in terms

of the radial and angular component of the field. From eq. (5.9), it is not difficult to
compute the expressions, details can be found in Appendix D.1:

ϑ̇ =
ḃ

b
ϑ+

b( ˙√ρ0 − ḃ)
ϕ+ b

sin

(
ϑ

b

)
, ϕ̇ = −ḃ− ( ˙√ρ0 − ḃ) cos

(
ϑ

b

)
. (5.18)

Then it is straightforward to compute δΦ̇/δΦ:

δΦ̇

δΦ
=

(
∂ϕ̇
∂ϕ

∂ϑ̇
∂ϕ

∂ϕ̇
∂ϑ

∂ϑ̇
∂ϑ

)
=

(
0 −b ˙√ρ0−ḃ

(ϕ+b)2
sin
(
ϑ
b

)
˙√ρ0−ḃ
b

sin
(
ϑ
b

)
ḃ
b

+
˙√ρ0−ḃ
ϕ+b

cos
(
ϑ
b

) ) . (5.19)

Guided by the classical action of the O(2) theory in the phase of spontaneously broken
symmetry, we write down the effective action for our theory. For reasons which will be
apparent later, we extend the truncation to include more terms than the classical action.
The effective action in an extended local potential approximation (LPA) reads

Γk =

∫
ddx

(2π)d
1

2

{
Zϕ(∂ϕ)2 + (Zϑ + U(ϕ))(∂ϑ)2 + Z4(∂ϑ)4

}
+ V [ρ], (5.20)

where we introduced ρ = Φ∗Φ. It contains a standard kinetic term for the massive mode
ϕ and an effective potential for the collective variable Φ, as well as a kinetic term for the
Goldstone mode ϑ.
U(ϕ) is a term in the effective action which is responsible for correct Goldstone physics.

The necessity of this term is easily seen when inspecting ∂Φ∗∂Φ = (∂ϕ)2+(∂ϑ)2(1+ϕ/b)2.
It is an extension of the interaction between Goldstone and radial mode that we have
already in the classical action. If we did not allow for a general potential, the contribution
of the Goldstone modes to the flow of the effective potential would vanish. In the large-N
limit, this would certainly be wrong, as the flow of the radial mode is surpressed by 1/N
compared to the flow of the Goldstone mode.
In the limit b → ρ0, U should be expanded in (1 + ϕ/b), if b assumes a different

value, a parametrisation in ϕ is appropriate. It is numerically advantageous to work
exclusively with an expansion in ϕ and identifying the coefficients of this expansion with
the coefficients of an expansion in (1+ϕ/b). We will see that the variations of the results
depending on the different parametrisations are minimal.

Flow of the Radial Mode Potential

The central quantity of the theory is the effective potential V , that provides information
about the ground state of the system. The potential V is most conveniently parametrised
by

V [ρ] =
λk
2

(ρ− ρ0,k)
2 +O(ρ3). (5.21)
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5.4 Flow of Scale Dependent Fields

We neglect higher terms in the expansion of the potential, as we are only interested in
the behaviour of the vacuum expectation value. Higher terms are of importance in the
calculation of critical exponents, see e.g. [63]. Note that we parametrised the effective
potential in terms of the absolut value of the field, ρ = Φ∗Φ. The propagator in the flow
equation, on the other hand, is obtained by taking derivates of the effective action Γ with
respect to the field ϕ and ϑ. By means of the chain rule, we rewrite these derivates. To
compute Γ(2), we can immediately set ϑ = 0 from the start, since in the derivation of the
flow of the coefficients of V [ρ], no derivatives w.r.t. to ϑ appear.
The full flow equation (5.17) reduces to the flow equation for the effective potential:

V̇k + Φ̇i
δΓ

δΦi

∣∣∣∣
ϑ=0=p

=
1

2

∫
ddp

(2π)d
ṘijGji, where Ṙ =

(
Ṙk,ϕ 0

0 Ṙk,ϑ + 2∂ϑ̇
∂ϑ
Rk,ϑ

)
. (5.22)

Note that the second term in the ϑϑ-component of the regulator is a consequence of the
second term on the RHS of eq. (5.17). In Ṙϕ this term is zero, c.f. eq. (5.19).
The propagtor has only diagonal components, these are Gϕ and Gϑ. Explicitly they

read

Gϕ =
(
Zϕp

2 + 2V ′ + 4ρ0V
′′ +Rk,ϕ

)−1 (5.23)

Gϑ =

(
p2(Zϑ + U(ϕ)) +

∂2ρ

∂ϑ2
V ′ +Rk,ϑ

)−1

, (5.24)

where we defined V ′ = ∂V (ρ)/∂ρ and used ∂ρ/∂ϑ|ϑ=0 = 0. The optimised cut-off for the
scalar fields is given by

Rk,ϕ/θ(p
2) = Zϕ/θ(k

2 − p2) θ(Zϕ/θ(k
2 − p2)) (5.25)

In the flow equations for the effective potential V the second term is particularly simple,
we defer the calculation to App. D.2. The flow equation for the effective potential V
reads:

V̇ − ρ̇0

(
1 +

ϕ√
ρ0

)
V ′ =

1

2

∫
ddp

(2π)d

(
Ṙk(p

2)

Zϕk2 + 2V ′ + 4ρ2V ′′
+

Ṙk(p
2) + 2∂ϑ̇

∂ϑ
Rk(p

2)

Zϑk2 + p2U(ϕ) + ∂2ρ
∂ϑ2V ′

)
(5.26)

Getting the flow equations for λ and ρ0 is straightforward, we project the flow equation
onto the coefficients of the potential.

To compute the second term in the regulator eq. (D.3), we need to specify the behaviour
of b during the flow. b determines wether our parametrisation is in the symmetric (Φ =
ϕ + iϑ )or in the spontaniously broken Φ = ϕeiϑ regime. We choose the following form
of b:

b =
√
ρ0

(
1 +

(
αk2

λρ0

)ν)
. (5.27)
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5 Dynamically Adjusted Degrees of Freedom

As mentioned above the function b interpolates between the different regimes of the
theory. Via the parameters α and ν we can influence the location and strength/rapidity of
the transion. The transition takes place around αk2/λρ0 = 1. It is obvious, that smaller
α corresponds to an earlier transiton into the Goldstone parameterisation b = ρ0. ν
determines the rapidity of the transition, larger ν induces a sharper transition. By varying
the parameters α and ν we can get an intuition for the quality of the parametrisation. It
would be desireable to have a parametrisation ot the theory that is as weakly dependend
on the form of b as possible.

Flow of the Goldstone Potential

Getting the flow of U is more involved, since it comes with the term ∂mϑ. Therefore, we
have to take a second derivative w.r.t. to ϑ on Eq. (5.17) and a second derivative w.r.t. to
momentum p, that we will set to zero at the end. Generically this will generate the loop
and tadpole graphs, shown in Fig. 5.2, on which we will apply second derivatives w.r.t.
external momentum. This complicates the evaluation of these graphs, as the momentum
derivative could act on the propagators, yielding expressions that are difficult to handle.
We will neglect these terms in our approximation, thus, we only consider terms that
arise when a momentum derivative acts on the vertices, that have a trivial momentum
dependence. The tadpole has a trivial dependence on external momenta.
This approximation is exact in the case of α = 0, i.e. in the broken regime, since then

all vertices with two Goldstone boson legs carry the momentum structure pq̇, where p
and q are the momenta of the Goldstone bosons. Therefore, if the momentum derivative
does not act on the vertices, the whole graph vanishes upon setting p = 0.
The other limit α → ∞ is also not a problem since the contributions of the function

U on the effective potential V are negligible and so are the contributions to U . Only in
the range α ∈ (0.1...1000) the omitted terms induce small corrections.
We now give a derivation of the flow for the Goldstone potential. From the parame-

terisation eq. (5.20) and eq. (5.17), we can extract the flow of U by means of

Żϑ + U̇
∣∣∣
ϑ=0=p

=
1

2d

(
∂2
p

δ2

δϑ2
Γ̇− ∂2

p

δ2

δϑ2
Φ̇i

δΓ

δΦi

)∣∣∣∣
ϑ=0=p

, (5.28)

where we introduced the shorthand notation ∂2
p = ∂pµ∂pµ . It is simple algebra to work

out the second term on the RHS, we exhibit these calculations in App. D.3. We obtain
for the second term

∂2
p

δ2

δϑ2
Φ̇i

δΓ

δΦi

= 2d

[
(Zϑ + U(ϕ))

(
ḃ

b
+

˙√ρ0 − ḃ
ϕ+ b

)
− ˙√ρ0 U

′(ϕ) + Zϕ ϕ
˙√ρ0 − ḃ
b2

]
.

(5.29)
There is a further approximation we make at this level. Namely, we neglect derivatives
w.r.t. to ϑ acting on δΦ̇/δΦ.
For the first term on the RHS, we have to take a second derivative of the effective
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Figure 5.2: The graphs appearing in the computation of U , dashed lines represent Gold-
stone propagators Gϑ, solid lines denote radial propagators Gϕ. Full circles
symbolise vertices, crossed circles signal regulator insertions.

action w.r.t. ϑ, schematically it reads

δ2

δϑ2
Γ̇ = −1

2
Tr
[
ṘGΓ(4)G− 2ṘGΓ(3)GΓ(3)G

]
where Γ(4) is the second derivative of Γ(2) with respect to ϑ. A detailed definition is in
the appendix. From these terms, we get various loop graphs that contribute to the flow.
These are shown in Fig. 5.2. Obviously the tadpole stems from the contribution with the
four boson vertex Γ(4).

5.5 Results

As a first check of the parameterisation, we examine our choice of the control parameter
b of the field parameterisation, which decides whether we are in the symmetric or the
broken phase of the theory. b depends on two parameters α and ν, we will vary these
independently. The results are shown in Fig. 5.3, showing the dependence of the field
expectation value ρ0,k→0 on the parameters α and ν. We see, that for a broad range of
values of α the results of the flow is unaffected by a variation of α and ν, supporting the
choice of b. Furthermore, we observe, that the region of small α entails to a higher value
of ρ0 than the one where α is large. Large α is corresponds to a flow in the linear basis,
whereas small α implies a flow almost in the Goldstone basis.

This is reassuring in the sense that we are relatively independent of the shape of the
function b, however, the dependence of the result on b is as expected.
It is interesting, to check, whether the terms in the flow equation that arise due to the

scale dependence of the fields are significant. The results are shown in Fig. 5.4 for various
combinations where we either took these terms into account or neglected them. The left

plot displays the effects the term Tr
δΦ̇k,i
δΦk,j

(
1

Γ
(2)
k +Rk

Rk

)
ij

, has on the flow. For α → ∞
the result is identical, this is as expected, as this corresponds to a flow in the Cartesian
basis, the fields are not scale dependent. Since the term under discussion arises only for
scale dependent fields, there should be no difference. In the Goldstone basis, where the
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Figure 5.3: Dependence of ρ0 and λ on the parameter α. The initialconditions for the
fRG are Λ = 100, rho0,Λ = 60, λΛ = 40. The red curve correspond to ν = 1,
black to ν = 0.7 and orange to ν = 0.5

fields are scale dependent, the difference of the flows is not very large, we conclude, that
this term is not of great importance.
The term Φ̇k,i

δΓk
δΦk,i

on the other hand appears to be significant, as it is responsible for
the difference in the Goldstone regime that we observe in the graph on the right. Let us
consider this in more detail. Φ̇k,i has two components φ̇ and ϑ̇. The blue and the black
curve correspond to the equation with the φ̇-term, where for the blue curve we switched
off the ϑ̇-term. Switching off the φ̇-term, we get the red and orange curves, where for the
red curve, we also switched off the ϑ̇-term.
Note that we have normalised ρ0 to agree in the Cartesian basis. If we do not normalise

the curves, we observe that switching off the φ̇-term shifts the whole curve down. We
mention, that the higher terms in the radial variable potential, are not sensitive on the
terms in the flow equation that arises from the scale dependence.
We conclude that the term Φ̇k,i

δΓk
δΦk,i

is important for a correct description of the physics.
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Figure 5.4: ρ0,k→0 in various approximations to the full flow.
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Figure 5.5: Dependence of ∆ρ0 on the initial condition ρ0(k → Λ).

It is interesting to note, that the scale dependence of the radial field governs the dynamics
of the theory more drastically than the scale dependence of the Goldstone field. For
a O(N) theory in the large-N limit, we expect the contrary, it will be interesting to
investigate this.

We can also explore the difference in the results for different α in relation to the initial
conditions. Therefore we consider

∆ρ0 =
ρ0(k → 0, α→ 0)− ρ0(k → 0, α→∞)

ρ0(k → 0, α→ 0)
(5.30)

We observe that the closer we are to the symmetric regime, the larger the difference
between the radial mode expectation value for the Goldstone and the linear basis. This
is as expected, as we are closer to the parameterisation, in which the radial basis is
appropriate. Comparing it to the Goldstone basis of course gives larger deviations, the
more we are in the symmetric regime.

Finally, we want to check of the parametrisation of U(φ), in order to see how important
the Goldstone mode potential is for the physics we investigate. We devised four different
parametrisations of U . These are:

(I) : U(ϕ) = Zϑ + d1ϕ+ d2ϕ
2 + d3ϕ

3 + d4ϕ
4 (5.31)

(II) : U(ϕ) = Zϑ + d1ϕ+ d2ϕ
2 (5.32)

(III) : U(ϕ) = Zϑ

(
1 +

ϕ

b

)2

(5.33)

(IV) : U(ϕ) = Zϑ

(
1 +

ϕ

b

)2

+ a1

(
1 +

ϕ

b

)3

+ a2

(
1 +

ϕ

b

)4

. (5.34)
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Without showing numerical results, we state that particularly for small and moderate
α the qualitity of the parametrisation of U plays a role. However, we also observe, that
already parametrisation II gives almost identical results as parametrisation I. This is
very fortunate since every additonal term in the parametrisation significantly amplifies
the computational effort. There is however a little caveat, the results are computed
neglecting the term δΨ̇/δΨ, which gives only quantitative corrections. Hence we will
mainly work with the numerically simpler parametrisation II. That the parametrisation
is less important at small at large α is not unexpected since U plays a role in the Goldstone
physics and this becomes important when we go away from the linear basis.
In summary we have shown that a dynamical reparameterisation of degrees of freedom

within the fRG is feasible and exhibits non-trivial results. This is an important finding,
because for a flow of the effective potential of the confinement order parameter formulated
in the Polyakov loop variable we need such a reparameterisation.
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6 Conclusion

“Veni, Vidi, Vici”
Gaius Iulius Caesar

6.1 Summary

We have studied the gluon and quark dynamics of QCD at finite temperature and chem-
ical potential in a non-perturbative RG framework based on a simple flow equation for
the effective action. It allows to relate full quantum effective action to the classical action
of the theory at hand, giving us a powerful toolbox to study quantum field theories non-
pertubatively. It is in a sense a complementary approach to lattice QCD, which allows to
study QCD with high precision and virtually no approximations. Certain aspects of the
theory, like chiral symmetry breaking or a finite chemical potential, are however hardly
tractable in this approach. It is also difficult to see the physical mechanisms that are at
work. Here the advantages of the fRG come into play and what seems to be a disad-
vantage, the necessity to truncate the system of flow equations, turns into an advantage:
only within a finite system of equations, we can identify the relevant degrees of free-
dom. Extending the system, we can systematically check the validity of the assumptions
made. Finally can we cross-check the results by comparing it with other non-perturbative
methods, preferably in a regime where the two methods are assumed to be suitable.

In Chap. 3, we proposed a new formalism in which we can describe confinement in
an elegant and simple way. In Polyakov gauge, which is a physical gauge, we were able
to relate the confinement order parameter to the effective potential of the gluons. The
gluonic theory effectively reduced to a scalar theory with a non-trivial effective potential
that is imposed as an external input. The massive propagation of the Polyakov loop
implied a simple truncation of the effective action, that led to a flow which we could
solve numerically with a high accuracy. We showed that our results for the gauge group
SU(2) are compatible with lattice QCD data and also with result for the deconfinement
phase transition obtained in another gauge, indicating gauge invariance of the results.
The phase transition is of the correct order and exhibits the expected critical exponents.
In the course of computing critical exponents, we showed that it is possible to compute
critical exponents using Dyson-Schwinger equations, what has not been done so far, c.f.
Appendix B.6.

A different formulation of the theory in terms of the natural variables, in which we
compute the Polyakov loop in, was proposed. This formulation has to be parametrised
correctly to obtain meaningful results. We have conjectured a parameterisation that
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6 Conclusion

could do this.

Eventually, we extend the formalism to the physical gauge group SU(3). It became
apparent, that the results obtained up to this point are crucial, to find a phase transition.
Numerically the situation is a lot more involved, but there are good indications, that a
solution of the problem is within reach. Already within the results obtained so far, there
is a clear indication, that the method works and that the phase transition is of correct
order. The problems come with the boundary conditions of the potential, as we have to
be carefull to define derivatives on them correctly. In SU(2) we found a method to deal
with this problem, so we expect it to be solvable for SU(3) as well.

It is our hope that our research will spark further investigations on confinement in
Polyakov gauge. We will discuss possible extensions in the outlook.

In Chap. 4 we discussed various approaches towards the QCD phase diagram. Starting
from the NJL model, we explained the notion of dynamical hadronisation by means of the
Hubbard-Stratonovich transformation and how it can be used to describe chiral symmetry
breaking. In a model of QCD in Landau gauge, that incorporates much of the dynamics,
we were able to solve flows of mesonic and quark degrees of freedom at finite chemical
potential. It was possible to calculate the effects dynamical quarks have on the gauge
coupling and the dependence of the chemical potential on these.

Regarding the deconfinement phase transition, we extend our analysis of Chap. 3 by
including dynamical quarks into the flow. The phase transition becomes a cross-over
and we could compute the quark-mass dependence of the cross-over temperature. The
computation provides a basis for further investigations.

Concluding Chap. 4, we presented the first successful two-flavor continuum QCD
computation at finite temperature in the chiral limit at imaginary chemical potential. We
provided a framework to compute observables that allow to establish a relation between
confinement and chiral symmetry breaking. The confinement-deconfinement and chiral
phase transition temperatures Tc,conf and Tc,χ respectively agree within the error bars, as
do Tc,conf and the critical temperature T̃c,conf of the dual observable. The latter does not
only provide a non-trivial reliability check of the approximations involved, but also gives
an estimate on the potential broadness of the confinement-deconfinement temperature.

In Chap. 5 we discussed a formulation of the fRG with dynamically adjusted degrees
of freedom, that we encountered in many instances throughout this work. In an O(2)
model, we investigated the importance of a correct parameterisation of the Goldstone
physics and particularly the changes induced in the flow equation stemming from the
scale dependence of the degrees of freedom. We found that the flow equation in a not too
difficult truncation is already very stable under variation of the scale dependence. This
give further support that the results obtained in Chap. 4 using dynamical hadronisation
are reliable.
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6.2 Outlook

6.2 Outlook

There are various directions to extend the analysis of this work. Concluding this work,
we want to present these directions.

The investigations of the deconfinement phase transition in Polyakov gauge are at
present only in a exploratory state. First of all a full description of the deconfinement
phase transition in terms of the effective potential computed on one Weyl chamber with
appropriate boundary conditions should be the goal of further research. It is expected,
that with an elaborate parameterisation of the potential, e.g. in terms of Chebyshev Poly-
nomials or with a grid that implements the symmetry of the Weyl chamber appropriately,
the phase transition can be observed.

The results obtained, apart from being interesting on their own, can serve as important
inputs for other computations. PQM or PNJL models would benefit from these, as they
allow for a cross-check with the current calculations in which the input is purely from the
lattice. Within flow equation approaches towards these models, the scale dependence of
the potential is of further interest. Such a calculation would already be very close to a
full treatment of QCD in Polyakov gauge.

A comparison with results from other functional methods could shed further light on
the gauge independence of the continuum approaches towards QCD.

Another interesting extension of the calculation is computing the running of the gauge
coupling in Polyakov gauge. This eliminates the uncertainty in the results that comes
from using an external input as coupling. This calculation is hampered by zero modes
that still exist in the propagator of the spatial gauge fields.

An ambitious extension is to treat the full gluon system in the fRG. Therefore, we
would have to set up flow equations for the coupled system of the spatial and temporal
gauge fields. The effective potential would give a backreaction on the spatial gauge fields,
thereby it would be impossible to integrate out the spatial gauge fields right from the
start, as we did. We would also have to include the running of the three- and four- gluon
vertex, which would again give us a handle on the running of the gauge coupling.

We already discussed how to include a chemical potential in Polyakov gauge in Sec.
4.3. As an approach towards the QCD phase diagram a tractable extension would be to
compute the curvature of the deconfinement phase transition with increasing chemical
potential. Thereby we could also comment on the whether there is a coincidence between
the deconfinement and the chiral phase transition in the phase diagram.

At present we work on a refined analysis on the relation between confinement and
chiral symmetry breaking. We work on employing a bettered approximation as well as
on the extension of the present work to real chemical potential and 2+1 flavors. Apart
from providing direct results on the physical phase diagram of QCD this should sheed
some light in the current ongoing debate concerning lattice simulations at finite chemical
potential.

The analysis of scale dependent fields should be extended towards general O(N) theo-
ries, where we can establish the importance of Goldstone physics more evidently.
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6 Conclusion

To wrap up, we have corroborated the capability of fRG methods to investigate Quan-
tum Chromodynamics. With the determination of the deconfinement phase transition
temperature compatible with lattice QCD and the gauge independence, we dare say to
have made a worthy contribution to the knowledge about QCD. Still, as we saw, there
remains much work to be done, part of it is already in progress.
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A Appendix: Definitions

A.1 Conventions

We will use the following conventions throughout this work, following the conventions
used in [42]

• The metric gµν that defines the inner product of two 4-vectors is Euclidian in all
calculations:

gµν = δµν , (A.1)

where δµν is the Kronecker symbol. Consequently we do not need to distinguish
between covariant and contravariant tensor structures.

• We work in natural units where

~ = c = 1.

• We use the Einstein sum convention.

• We use Euclidian gamma matrices. They are defined via the relation

{γmu, γnu} = −δµν (A.2)

• Greek indices run from 1 to 4.

A.2 Color Algebra

In this section, we show our conventions for the generators of the SU(Nc) Lie-groups used
throughout this work and discuss some of their properties particularly the ones important
for evaluating the color traces appearing in this work.

The Color Group SU(Nc)

Though we use only Nc ∈ 2, 3 in this work, it is instructive and also not difficult to
consider groups with an arbitrary Nc. SU(Nc) is the group of unitary matrices U of
rank Nc with unit determinant. It has N2

c − 1 generators T a, obeying the commutation
relation

[T a, T b] = ifabcT c, (A.3)
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A Appendix: Definitions

where fabc are the structure constants of the group. a, b, c take values in 1, · · · , N2
c − 1.

The generators are normalised by the relation

Tr[T aT b] =
1

2
δab1c. (A.4)

Upon summation they fulfil the relation∑
a

(T a)αβ(T a)γδ =
1

2
δαδδβγ − 1

2Nc

δαβδδγ (A.5)

Specifying to SU(2), the generators in the fundamental representation are proportional
to the Pauli matrices τa by the relation T a = 1

2
τa, with eq. (A.3) it is a simple task

to compute the structure constants. The structure constants are given by the totally
antisymmetric tensor, fabc = εabc.
For SU(3), the generators in the fundamental representation are given by the Gell-

Mann matrices T a = 1
2
λa
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B Appendix: Polyakov gauge

B.1 Faddeev-Popov Determinant

When we introduced Polyakov gauge, we stated the result for the Faddeev-Popov deter-
minant. Here, we want to give a detailed derivation of the result. For the gauge group
SU(2).

The general definition of the Faddeev-Popov determinant can be found e.g. in [146].
From the gauge fixing functionals eq. (2.36) and eq. (2.37) we can compute the Faddeev-
Popov determinant given by

∆FP [A] = det

[
δF a(Aω)

δωb

]
, (B.1)

where Aω is the gauge transformed gauge field A. a and b take values +, - and 3,
analogously to the definition in the gauge fixing conditions. In order to compute the de-
terminant we need to have an expression for Aω. For infinitesimal gauge transformations
it is given by

Aωµ = Aµ − (∂µσ
a + igAbµ[σa, σb])ωa . (B.2)

In the following we use the representation ωaσa = ω+σ−+ω−σ+ +ω3σ3, and the related
derivatives w.r.t. ω±, ω3. We introduced σ± = σ1 ± iσ2, where the σi are the Pauli
matrices. The matrix elements related to ω-derivatives of F+ read

δF+(Aω)

δω+
= −Tr σ+

(
∂0σ

− + iA3
0[σ−, σ3]

)
,

δF+(Aω)

δω−
= 0 ,

δF+(Aω)

δω3
= −Tr σ+

(
∂0σ

3 + iA+
0 [σ3, σ−]

)
. (B.3)

Analogously we get for the ω-derivatives of F−

δF−(Aω)

δω+
= 0 ,

δF−(Aω)

δω−
= −Tr σ−

(
∂0σ

+ + iA3
0[σ+, σ3]

)
,

δF−(Aω)

δω3
= −Tr σ−

(
∂0σ

3 + iA−0 [σ3, σ+]
)
. (B.4)
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B Appendix: Polyakov gauge

The ω-derivatives of F 3 yield long expressions, and we only display the parts proportional
to ∂0Tr σ3A0, where we have abbreviated additional terms proportional to the spatial
gauge fields by dots,

δF 3(Aω)

δω+
= −i∂0A

−
0 Tr σ3[σ−, σ+] + · · · ,

δF 3(Aω)

δω−
= −i∂0A

+
0 Tr σ3[σ+, σ−] + · · · ,

δF 3(Aω)

δω3
= −2∂2

0 + · · · . (B.5)

The contributions that we left out only contribute a constant to the Faddeev-Popov
determinant, which can be absorbed in the normalisation.
Evaluating the traces (B.3), (B.4), (B.5) we can compute the Faddeev-Popov deter-

minant. Again we only concentrate on the terms dependent on A0, and use the gauge
fixing condition A+

0 = A−0 = 0 for eliminating some of the off-diagonal elements,

∆FP [A] = −det

 ∂0 + igA3
0 0 0

0 ∂0 − igA3
0 0

−4ig
∫
dx0∂1A

−
1 4ig

∫
dx0∂1A

+
1 1/2(∂2

0 +
∫
dx0∂

2
1)


= −det

[
(∂0 + igA3

0)(∂0 − igA3
0)

1

2

(
∂2

0 +

∫
dx0∂

2
1 +

∫
dx0dx1∂

2
2 +

∫
dx0dx1dx2∂

2
3

)]
. (B.6)

We neglected terms that were previously abbreviated by dots. Using the third gauge
fixing condition, ∂0A

3
0 = 0, we can simplify the first term, the second term in brackets

is independent of A0, therefore we will abbreviate it. We can write the Faddeev-Popov
determinant as

∆FP [A] =
1

2
det
[(
∂2

0 +
(
gA3

0

)2
)]

det[
(
∂2

0 + · · · )] .
We note again that the second determinant in eq. (B.7) is independent of the gauge
fields and hence can be absorbed in the normalisation of the path integral. The first
determinant is evaluated in frequency space, we get

∏
~x

(
(gA3

0(~x))
n=∞∏
n=1

(
(2πTn)2 − (gA3

0(~x))2
))2

. (B.7)

Multiplying the determinant eq. (B.7) with a further constant normalisation

N =

(
n=∞∏
n=1

(2πTn)2

)−2

, (B.8)
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we arrive at

Ndet [GA0 ] =
∏
x

(gA3
0(x))2

n=∞∏
n=1

(
1−

(
gA3

0(x)

2πnT

)2
)
. (B.9)

Eq. (B.9) is just a product representation of the sine-function, sin(x) = x
n=∞∏
n=1

(
1− x2

(πn)2

)
,

and the final result for the Faddeev-Popov determinant is

∆FP [A] = N ′(2T )2

[∏
x

sin2

(
gA3

0(x)

2T

)]
, (B.10)

where N ′ is a further normalisation constant.

B.2 Integrating Out Spatial Gluons

Weiss showed, that the Faddeeev-Popov determinant, that we computed in the previous
section precisely cancels the contribution to the path-integral stemming from the longitu-
dinal gluons, i.e. those gluon fields with ~p ~A(p) 6= 0. After integrating out the longitudinal
gauge fields the Yang Mills action Seff = 1

4

∫
T
d4xF a

⊥,µνF
a
⊥,µν explicitly reads:

Seff = −1

2
β

∫
d3xZ0A0

~∂2A0 − 1

2

∫
T

d4xAai

[
(∂2

0 + ~∂2)δij − ∂i∂j+
2gfa3b(A0∂0 + g2A2

0(δab − δa3δb3)δij
]
Abj +O(A3

i ), (B.11)

where
∫
T
indicates, that we are integrating over imaginary time only from 0 to β. Writing

A3
0 = ϕ/(gβ) + a0, where ϕ is a constant and a0 the fluctuating field, this expression is

given to second order in the fluctuating fields by

SYM ≈ 1

2

∫
dτd3x

{
Z0(~∂a0)2 − 2ϕfa3c(∂0A

a
i )A

c
i+

ϕ2(δab − δa3δb3)AaiA
b
i − Aai

(
(∂2

0 + ~∂2)δij − ∂i∂j
)
Aaj

}
=

1

2

∫
dτd3x

{
(~∂a0)2 − Aai (~∂2 − ∂i∂j)Aaj − AaiDac

0 D
cb
0 A

b
i

}
, (B.12)

where we have defined

Dab
0 = ∂0δ

ab + A3
0gf

a3b. (B.13)

In the present work we neglect back-reactions of the A0 potential on the transversal
gauge fields. Assuming an expansion around Aai = 0, Γ(2) is block-diagonal, like the
regulators, cf. eq. (3.20), and we can decompose the flow equation (2.65) into a sum of
two contributions, schematically written as

∂tΓk =
1

2
Tr

(
1

Γ
(2)
k +RA

)
00

∂tRk + Tr ∂t

[
ln(S

(2)
YM +RA)

]
ii
. (B.14)
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The first term on the RHS encodes the quantum fluctuations of A0, the second line
encodes those of the transversal spatial components of the gauge field. In the present
truncation the second line is a total derivative w.r.t. t, and does not receive contributions
from the first term. Therefore we can evaluate the flow of the second contribution, and
use its output V⊥,k(A0) as an input for the remaining flow.
The computation is done for the regulators eq. (3.20). As explained below eq. (3.14)

in section 3.1.1, the cut-off parameters k, and k⊥ in Rk for the fluctuations of A0 and
Rk,⊥ for the fluctuations of ~A⊥ respectively satisfy a non-trivial relation k⊥ = k⊥(k) for
coinciding physical infrared cut-offs k0 for A0 and k⊥ for ~A⊥. The computation is similar
to those done in one loop perturbation theory in SU(2) by Weiss [52], the only difference
being the infrared cut-off. We infer from the second line in eq. (B.14) that

V⊥,k = V⊥,ΛUV
+

1

2
Tr
[
ln(S

(2)
YM +RA)

]
ii

∣∣∣∣k
ΛUV

(B.15)

= VW + T
∑
n

∫
d3p

(2π)3
θ(k2
⊥ − ~p2) ln(k2

⊥ +D2
0) .

In eq. (B.15) we have used that V⊥,ΛUV→∞ = 0 up to a constant term, and have added
and subtracted the Weiss potential VW [52],

VW (ϕ) = −(ϕ̃− π)2/(6β4) + (ϕ̃− π)4/(12π2β4) , (B.16)

with the dimensionless ϕ = gβA0, and ϕ̃ = ϕ mod 2π. Alternatively one can simple put
ΛUV = 0, even though this seems to be counter-intuitive. We also have used that with
eq. (3.21) it follows Tr Π⊥ = 2. Performing the Matsubara sum and neglecting terms
independent of the temporal gauge fields, the resulting effective potential is given by

V⊥,k =
4T

(2π)2

∫ k⊥

0

dpp2
{

ln
(

1− 2 cos(ϕ)e−βk⊥ (B.17)

+e−2βk⊥
)
− ln(1− 2 cos(ϕ)e−βp + e−2βp)

}
+ VW .

From eq. (B.17) we deduce that the potential Vk⊥ approaches VW in the limit k → 0 and
vanishes like e−βk⊥ cos(ϕ) for k → ∞. From eq. (B.14) we can now extract the flow of
the effective potential, by setting Veff,k = ∆Vk + V⊥,k. Then we get

∂t∆Vk =
1

2

∫
d3p

(2π)3

(η0(k2 − ~p2) + 2k2)θ(k2 − ~p2)

k2 + g2
kβ

2(∆V ′′k + V ′′⊥,k)
, (B.18)

with the input V⊥,k given in eq. (B.17) and η0 = ∂t lnZ0. The factor g2β2 arises from the
fact that we parametrise the potential in terms of ϕ rather than in A0, and g2

k = g2/Z0

is nothing but the running coupling at momentum ~p2 ∼ k2
phys. Thus we estimate g2

k =
4παs(~p

2 = k2
phys). Note that gk is an RG-invariant. The momentum integration can be

performed analytically, and we are led to

β∂k∆Vk =
2

3(2π)2

(1 + η0/5)k2

1 +
g2kβ

2

k2 ∂2
ϕ(V⊥,k + ∆Vk)

, (B.19)
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where η0 is given by
η0 = −∂t logαs , (B.20)

as the consistent choice in the given truncation.

B.3 Matching Scales

The flow of the temporal component of the gauge field, A0(~x), is computed with a three-
dimensional regulator, see eq. (3.20). In Polyakov gauge A0(~x) only depends on the spatial
coordinates, whereas the spatial components A⊥(x) are four-dimensional fields. For cut-
off scales far lower than the temperature, k/T � 1, also the spatial gauge fields are
effectively three-dimensional fields as only the Matsubara zero mode propagates. Hence
in this regime we can identify k = k⊥. For large cut-off scales, k/T � 1, the A0-flow
decouples from the theory. A comparison between the two flows can only be done after
the summation of the spatial flow over the Matsubara frequencies. In the asymptotic
regime k/T � 1 this leads to the relation

1

k
'

∞∑
n=−∞

1

ω2
n + k2

⊥
→ 1

2k⊥
, (B.21)

The crossover between these asymptotic regimes happens at about k/T = 1. This
crossover is implemented with the help of an appropriately chosen interpolating func-
tion f ,

T

k2
f(k/T ) = T

∞∑
n=−∞

1

ω2
n + k2

⊥
, (B.22)

A natural choice for f(k/T ) is depicted in Fig. B.1, and has been used in the computa-
tion. A more sophisticated adjustment of the relative scales can be performed within a
comparison of the flow of momentum-dependent observables such as the wave function
renormalisation Z0. The peak of these flows in momentum space is directly related to
the cut-off scale. Indeed, the function f carries the physical information of the peak of
the flow at some momentum scale. Scanning the set of f gives some further access to
the uncertainty in such a procedure. The effective cut-off scales kphys(k0) and k⊥,phys(k⊥)
in the flows of the temporal gluons and of spatial gluons respectively do not match in
general. If solving the flow within a local truncation as chosen in the present work we
have to identify the two effective cut-off scales, kphys(k0) = k⊥,phys(k⊥) = kphys, leading
to a non-trivial relation k0 = k0(k⊥). Moreover, the effective cut-off scale has to be used
in the running coupling αs = αs(~p

2 = k2
phys).

It is left to determine the physical cut-off scale kphys from either the flow of the spatial
gauge fields as k⊥,phys(k⊥) or from the temporal flow k0,phys(k0). We first discuss the
spatial flow. For an optimised regulator depending on all momentum directions, p2, we
have the relation kphys = k⊥. Hence the relation k⊥,phys(k⊥) can be computed if comparing
the flows for a specific observable with three-dimensional regulator Ropt,k⊥(~p2), eq. (3.22),
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Figure B.1: k̂⊥/k̂ as function of k̂ (left panel).k̂phys(k̂) from the comparison of flows with
three-dimensional regulators and four-dimensional regulators (right panel).

with flows with four-dimensional regulator Ropt,kphys
(p2). Here, as a model example, we

choose the effective potential of a φ4-theory. This leads to the relation kphys(k⊥) displayed
in Fig B.1. We remark that the relation in Fig. B.1 depends on the dimension d of the
theory, and flatten to kphys(k) = k for d → ∞. In other words, limk→∞ kphys(k)/k is
proportional to d/(d−1). Moreover, for momentum-dependent observables the crossover
rather resembles the relation k⊥(k0) as it is more sensitive to the propagator than to the
momentum integral of the propagator. Indeed, for the three-dimensional field A0(~x) the
cut-off scale k0 is another natural choice for the physical cut-off scale, k0,phys(k0) = k0,
even though it underestimates the importance of the spatial flow for the correlations of the
temporal gauge field. In summary, we take the above two extremal choices kphys = k⊥,phys

depicted in Fig. B.1 and kphys = k0,phys(k0) = k0 as a broad estimate of the systematic
error in the present computation.

B.4 Flow Equation of the Polyakov Loop Variable L

The derivation of the flow equation formulated in terms of the Polyakov loop variable
is very similar to the one for the effective potential of the gluons. The main difference
being the kinetic term of the Polyakov loop variable. The propagator of the Polyakov
loop variable L(~x) is now given by

(Γ
(2)
L,k +RA)−1

LL =

(
ZL

4

g2β2
(

1

1− L2
− 1)~p2 + ZL

4

g2β2
k2 + ∂2

LVk[ϕ(L)]

)−1

θ(k2 − ~p2) +(
ZL

4

g2β2
(

1

1− L2
)~p2 + ∂2

LVk[ϕ(L)]

)−1

θ(~p2 − k2), (B.23)
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Taking account of this modification, the equation for the potential is given by

β∆V̇L,k =
1

2

4π

(2π)3

∫ k

0

dpp2

4
g2β2ZA(2k2 + ηA(k2 − ~p2)

ZA
4

g2β2

(
1

1−L2 − 1
)
~p2 + ZA

4
g2β2k2 + ∂2

LVk[ϕ(L)]
. (B.24)

We already absorbed the flow of the spatial gluons into the flow as we did in the other
calculations. Then the full effective potential is Vk = ∆VL,k + V⊥,k.
Performing a substitution x = ~p2β2 ⇒ dx = β22pdp and k̂ = kβ, we can write the flow

in dimensionless variables,

β∆V̇L =
1

(2π)2

∫ k̂2

0

dx

β2

√
x

β

k̂2/β2 + ηa(k̂
2/β2 − x/β2)

L2

1−L2x/β2 + k̂2/β2 + g2β2

4ZA
∂2
LVk[ϕ(L)]

(B.25)

=
1

β3(2π)2

∫ k̂2

0

dx
√
x

k̂2 + ηa(x− k̂2)
L2

1−L2x+ k̂2 + g2β4

4ZA
∂2
LVk[ϕ(L)]

. (B.26)

The only thing left to do is rescale the potential V → β4V to end up with a flow defined
in terms of dimensionless quantities:

k̂∂k̂∆VL =
1

(2π)2

∫ k̂2

0

dx

√
x(k̂2 + ηA(k̂2 − x))

L2

1−L2x+ k̂2 + g2

4
∂2
LVk[ϕ(L)]

. (B.27)

As we want to write the flow in terms of the field ϕ, we compute ∂2
LV [ϕ(L)] and express

it in terms of ϕ. This is

∂2
LV [ϕ(L)] = ∂2

LV [2arccos(L)] = ∂L

(
∂2arccos(L)

∂L

∂V

∂ϕ

)
(B.28)

=
∂2(2arccos(L))

∂L2
V ′ +

(
∂2arccos(L)

∂L

)2

V ′′ (B.29)

= −2
cos(ϕ/2)

sin3(ϕ/2)
V ′ + 4

1

sin2(ϕ/2)
V ′′ (B.30)

In the second line we introduced the abbreviation ∂V
∂ϕ

= V ′

B.5 Derivation of the Flow for SU(3)

The flow equation for SU(3) YM theory in Polyakov gauge is much like the one for SU(2),
the only difference being that the Cartan now has two field components. This introduces
additional tensor structures into the objects we are dealing with. We will only discuss
the changes to the flow equation in detail that change the flow of the zero-component of
the gauge field. The spatial gluons generate the Weiss potential as in the case of SU(2),
only that it now is a potential of two fields. We need to get a representation of Γ(2),
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therefore, we first need to specify the effective action Γ, we choose the parametrisation

Γ[A0, ~A⊥] = −β
2

∫
d3x Z0 (A3

0
~∂2A3

0 + A8
0
~∂2A8

0) + (B.31)

β

∫
d3xVk[A0]− 1

2

∫
T

d4xZi ~A
a
⊥

[
(D2

0)ab + ~∂2δab
]
~Aa⊥ . (B.32)

We concentrate on the modifications in the flow equation, introduced by the additional
Cartan components. These are the main modifications to the flow equation, the additional
Cartan components lead to a modification of the Weiss potential in the sense, that it now
depends on two variables. For the effective action we get for the second derivative w.r.t.
the temporal gauge field A0

Γ
(2)
00 [A0, ~A⊥]

∣∣∣
p=0

=

(
δ2

δ(A3)2
δ2

δA3δA8

δ2

δA3δA8
δ2

δ(A8)2

)
Γ[A0, ~A⊥]

∣∣∣
p=0

. (B.33)

It is obvious how to compute the propagator, we choose as regulator the three-dimensional
optimised cut-off RA0 = (k2 − ~p2)1cartanθ(k

2 − ~p2)(
Γ

(2)
00 +

δ2Vk
δA2

0

+R00

)−1

=

(
Γ

(2)
A0

[A0, ~A⊥] +
δ2

δϕ2
Vk +RA0

)−1

=

(
k2 + g2

β2
δ2V
δϕ2

3

g2

β2
δ2V

δϕ3δϕ8

g2

β2
δ2V

δϕ3δϕ8
k2 + g2

β2
δ2V
δϕ2

8

)−1

θ(k2 − ~p2) +

(
~p2 + g2

β2
δ2V
δϕ2

3

g2

β2
δ2V

δϕ3δϕ8

g2

β2
δ2V

δϕ3δϕ8
~p2 + g2

β2
δ2V
δϕ2

8

)−1

θ(~p2 − k2)

=
1

(k2 + g2

β2
δ2V̂
δϕ2

3
)(k2 + g2

β2
δ2V̂
δϕ2

3
)− ( g

2

β2
δ2V

δϕ3δϕ8
)2(

k2 + g2

β2
δ2V
δϕ2

8
− g2

β2
δ2V

δϕ3δϕ8

− g2

β2
δ2V

δϕ3δϕ8
k2 + g2

β2
δ2V
δϕ2

3

)
θ(k2 − ~p2) +G(~p2) θ(~p2 − k2)

= G(k2) θ(k2 − ~p2) +G(~p2) θ(~p2 − k2),

where we implicitly introduced the propagator G. Taking the trace we get

Tr[(Γ
(2)
00 +R00)−1Ṙ00] =

2k2 + g2

β2

(
δ2V̂
δϕ2

3
+ δ2V̂

δϕ2
8

)
(k2 + g2

β2
δ2V̂
δϕ2

3
)(k2 + g2

β2
δ2V̂
δϕ2

3
)− ( g

2

β2
δ2V̂

δϕ3δϕ8
)2

∫
d3pṘk(~p

2)

=
β22k̂2 + β2g2

(
δ2V̂
δϕ2

3
+ δ2V̂

δϕ2
8

)
(k̂2 + g2 δ2V̂

δϕ2
3
)(k̂2 + g2 δ2V̂

δϕ2
3
)− (g2 δ2V̂

δϕ3δϕ8
)2

∫
d3pṘk, (B.34)

in the last line, we introduced the dimensionless scale k̂ = kβ. The integration in mo-
mentum space is not difficult. Combining this result with the flow of the spatial gluons,
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we get the flow for the potential ∆Vk̂

∂k̂∆V̂k̂ =
2k̂4

3(2π)2

(
1 +

η0

5

) 2k̂2 + g2
k

(
(∂2
ϕ3

+ ∂2
ϕ8

)Vk
)

(k̂2 + g2
k∂

2
ϕ3
Vk)(k̂2 + g2

k∂
2
ϕ8
Vk)− (g2

k∂ϕ3∂ϕ8Vk)
2

(B.35)

Note that this flow equation contains the flow of SU(2) as a limiting case, when restricting
to a potential that is not dependent on the Cartan direction ϕ8.

B.6 Critical Exponents

Critical exponents can be used to characterise a theory close to a second order phase
transition. The interesting point to be taken is that critical exponents do not depend on
the details of the interaction of a theory, but rather on the dimensionality and the internal
symmetries, they are universal. Thus, critical exponents can be used to categorise theories
into different universality classes. Also it is possible, to extract them experimentally and
compare the theoretically computed critical exponents with the experimental ones for a
system with the same universality class.

Critical exponents in the fRG

In SU(2) we computed the critical exponent ν of the theory from the temperature de-
pendence of the order parameter. While this is according to the definition of critical
exponents, the (f)RG provides other means to extract critical exponents. One searches
for a fixed point in the flow and extracts critical exponents from the stability matrix, first
work on this with the RG has been done in e.g. [39, 147, 148]. The allows for controlled
approximations, moreover, the results obtained allow for a simple unified picture of the
critical exponents obtained. Within the fRG critical exponents have been computed a
while later [149]. For reviews on this subject see e.g. [63, 81] and references therein.

Critical exponents from DSEs

Dyson Schwinger equations have been used to study various physical objects and theories.
However, they have not been used to compute critical exponents. While at first this seems
to be surprising, as DSEs have been established for quite a while, there is a reason, that
this formalism has not been used to compute critical exponents.

The main obstacle for computing critical exponents from DSEs is that usually, renor-
malisation group invariance is broken in the DSE framework. For the purposes the DSEs
are usually used for this is not an issue, however, it complicates things.

As DSEs are closely related to renormalisation group equations, i.e. DSEs are inte-
grated RGs, it is to be expected, that we can extract critical exponents of a theory using
DSEs. Therefore, let us try to calculate the effective potential of a scalar theory using
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DSEs. Starting point is the functional form of the DSE

δΓ

δφ
=

δS

δφ
+
λ

2

∫
d3p

(2π)3

1

p2 + V ′′
φ−

λ

3!

∫
d3p

(2π)3

∫
d3q

(2π)3

1

p2 + V ′′
1

q2 + V ′′
1

(p+ q)2 + V ′′
V (3), (B.36)

where the classical action S[φ] in momentum space is given by

S[φ] =
1

2
(p2 +m2)φ2 +

λ

4!
φ4. (B.37)

Note that the full equation is finite, however, there are divergences in the loop terms
individually. These of course have to cancel, for calculational purposes, we will render
each of these terms finite.
We start with the renormalisation of the tadpole term and write the mass of the scalar

field as
m2 = m̄2 + ∆m2 where ∆m2 = −λ

2

∫
d3p

(2π)3

1

p2
. (B.38)

m̄2 is the renormalised mass. With this renormalisation procedure, the first two terms
on the RHS are now given by

δS

δφ
+
λ

2

∫
d3p

(2π)3

1

p2 + V ′′
φ =

1

2
(p2 + m̄2)φ+ φ

λ

2

∫
d3p

(2π)3

(
1

p2 + V ′′
− 1

p2

)
(B.39)

The integral in the tadpole term can be computed using the substitution p̃2 = p2/V ′′:∫
d3p

(2π)3

(
1

p2 + V ′′
− 1

p2

)
= −

∫
d3p

(2π)3

V ′′

(p2 + V ′′)p2
= − 1

V ′′

∫
d3p

(2π)3

V ′′

(1 + p̃2)p̃2

= −(V ′′)3/2

V ′′
4π

(2π)3

∫ ∞
0

dp̃
p̃2

p̃2(1 + p̃2)

= −(V ′′)3/2

V ′′
4π

(2π)3

π

2
= −
√
V ′′

4π
. (B.40)

While this calculation was straightforward, the last term in eq. (B.36) is logarithmically
divergent and we cannot simply absorb this divergence by redefinition of a bare parameter.
The problem of this divergence can be cured when taking a derivative w.r.t. the field φ.
Before doing so, it is advantageous, to divide by V (3) first.

δ

δφ

(∫
d3p

(2π)3

∫
d3q

(2π)3

1

p2 + V ′′
1

q2 + V ′′
1

(p+ q)2 + V ′′

)
=

−
∫

d3p

(2π)3

∫
d3q

(2π)3

(
1

p2 + V ′′
1

q2 + V ′′
1

(p+ q)2 + V ′′

)
(

V (3)

p2 + V ′′
+

V (3)

q2 + V ′′
+

V (3)

(p+ q)2 + V ′′

)
=

−3V (3)

8π4

∫ ∞
0

dpp2

∫ ∞
0

dqq2

∫ 1

−1

dx

(
1

p2 + V ′′
1

q2 + V ′′

(
1

p2 + q2 + 2pqx+ V ′′

)2
)

(B.41)
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the integrals are easily solved using Mathematica. They evaluated to π2/(12V ′′), the full
result for the equation is V (3)/(32π2V ′′).

Note that the renormalisation procedure for the two loop terms is different, as men-
tioned before.

The full functional DSE reads(
V ′

V (3)

)′
=

(
S ′

V (3)

)′
−
(
φ
λ

8π

√
V ′′

V (3)

)′
+ λ

V (3)

192π2V ′′
. (B.42)

This can now be used to compute the effective potential and from that we can compute
the full scalar mass

m2 =
1

2

∂2V

∂φ2

∣∣∣∣
φ=φmin

, (B.43)

which we need in order to compute the critical exponent ν. Therefore, we use the relation

m2 ∝ |m̄− m̄cr|2ν , (B.44)

to compute the critical exponent as a “function” of m̄/m̄cr and extrapolate it to m̄/m̄cr =
1, c.f. Fig. B.2.
Before doing so, we write eq. (B.42) as a total derivative and perform the first inte-

gration of this differential equation analytically. Therefore, we observe, that V (3)/V ′′ =
d lnV ′′/dφ, we get:

0 =
d

dφ

(
− V ′

V (3)
+

S ′

V (3)
− φ λ

8π

√
V ′′

V (3)
+ λ

ln(V ′′)

192π2

)
. (B.45)

Upon integrating, we get a constant of integration, which we fix by the boundary condition
V (φm) = S(φm)|p=0, where we assume φm to be large. That is, at large values of the
field, the full effective potential is given by the classical potential. We get the final form
of the functional DSE:

−
√
m̄+ λ

2
φ2
m

8π
+ λ

ln(m̄+ λ
2
φ2
m)

192π2
= − V ′

V (3)
+

S ′

V (3)
− λφ

8π

√
V ′′

V (3)
+ λ

ln(V ′′)

192π2
. (B.46)

While in principle this analytical computation could be left to a numerical solver that we
use to get the results, practically we have to perform this step to get meaningful results.
Note that all the analytical calculations are based on the neglect of the wave-function
renormalisation of the scalar propagator. This will be the next extension of this model
[150].

Now we compute the critical exponent ν. We get from Fig. B.2

2ν = 0.995 → ν ' 0.5, (B.47)

which is just the mean-field exponent.
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This is not too surprising, as we did not take non-trivial momentum dependencies
of the propagators into account. In an fRG approach, there are always at least some
momentum dependencies taken into account, even in LPA, which is however done in a
sense implicitly, as it comes from the inclusion of momentum modes shell by shell. Our
findings support this claim that is often made when discussing the advantages of the fRG.
With the extension of this analysis to be done in Ref. [150], this should be overcome

and we should get results closer to the physical value of the critical exponent ν.

0.99 0.9925 0.995 0.9975 1

m/mcr

1

1.025

1.05

1.075

1.1

2ν

Figure B.2: The critical exponent ν, obtained from eq. (B.44)
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C.1 Deriving the Wave Function Renormalisation for
the Gluons

For the derivation of the vacuum polarisation induced by the quarks, we need the quark
propagator. As cut-off we will use the 3D optimised cut-off with chiral properties, as
introduced in Chap. 4.3.

For the derivation of the flow equation of the gluon wave-function renormalisation, we
neglect the tadpole diagram, and higher orders in Γ, as its contribution is proportional
to g4, and therefore does not belong to our truncation1. We can start to evaluate the
diagram of figure 4.5

The RHS of the flow equation explicitly reads:

−1

2

(
Gψkσψ̄rαṘψkσψ̄tβGψmλψ̄tβ

)
(q) · δ3Γk

δAai (p)δψmλ(q)δψ̄lγ(q + p)
·

·Gψnρψ̄lγ (q + p) · δ3Γk
δAbj(p)δψnρ(q + p)δψ̄rα(q)

. (C.1)

It is advantageous, to compute parts of the RHS separately and use properties of the cut-
off and propagators, to simplify the intermediate results. All details of the calculation
can be found in [129].

As an example we show the result for (GṘG)ψψ̄. We use the three dimensional opti-
mised regulator with chiral properties.

Then the quark propagator is given by Then, using the above relations, the dressed
propagator of the fermions in three dimensions reads

Gψψ̄ =
δab

Zψ(ωn, ~p, k)

θ(k2 − ~p2)

(
/~p
|~p|

)
αβ
k − i(mk)αβ

k2 +m2
k

+ θ(~p2 − k2)
(/~p)αβ − i(mk)αβ

p2 +m2
k


(C.2)

1The tadpole diagram vanishes classically on one-loop order and hence the full diagram contains con-
tributions of the order of box-diagrams and higher, which are at least proportional to g4.
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And finally we arrive at

Gψkσψ̄rαṘψkσψ̄tβGψmλψ̄tβ =
1

Zψ(~p,~k)
θ(~k2 − ~p2) ·{

(ηψ + 1)

(k2 + m̃2)2
kδrm

[( 6~p
|~p|
)
ασ

k + m̌ασ

]( 6~p
|~p|
)
σβ

[( 6~p
|~p|
)
βλ

k + m̌βλ

]

− (ηψ + 1)

(k2 + m̃2)2
δrm

[( 6~p
|~p|
)
ασ

k + m̌ασ

]
(6~p)σβ

[( 6~p
|~p|
)
βλ

k + m̌βλ

]

+
δrm

(k2 + m̃2)2

[( 6~p
|~p|
)
ασ

k + m̌ασ

]
( 6~p)σβ

[( 6~p
|~p|
)
βλ

k + m̌βλ

]}
. (C.3)

Deriving the anomalous dimension involves quite a bit of algebra and interchanging of
derivatives and integrals. Neglecting the anomalous dimension of the fermion, we obtain:

∂2
p

δ2Γ̇

δA2

∣∣∣∣
p=0

= − g2

(4π)2
ZAQ

k3

(k2 +m2)
3
2

4 · 16 θ(µ−
√
k2 +m2). (C.4)

Our result for the scaling of wave function renormalisation of the gauge field agrees
with perturbation theory [146] in the limit µ→ 0, m→ 0 and ηψ → 0.

C.2 Roberge-Weiss Invariance

We mentioned, that we can absorb the center shifts of the phase in the gauge fields. Here
we give a detailed derivation of this statement. We start off by considering the Dirac
operator and its eigenvalues. We only consider the case of SU(3), which is also the gauge
group we use in the calculations.
In the fundamental representation the generators in the 3- and 8- direction are given

by:

τ3 =
1

2

 1 0 0
0 −1 0
0 0 0

 , τ8 =
1

2
√

3

 1 0 0
0 1 0
0 0 −2

 . (C.5)

The fermionic part of the effective action including the imaginary chemical potential like
term is given by ψ̄

(
i /D − 2πTθγ0

)
ψ and we can write the zero component of the Dirac

operator in terms of the eigenvalues of the gauge fields in 3- and 8-direction ϕ3 = βgA3
0

and ϕ8 = βgA8
0:

iD0 − 2πTθ = 2πT

(n+
1

2
− θ
)
13 +

1

4π

 ϕ3 + ϕ8√
3

0 0

0 −ϕ3 + ϕ8√
3

0

0 0 −2ϕ8√
3


 (C.6)

114



C.2 Roberge-Weiss Invariance

Defining ϕ̄3 ≡ ϕ3 − 3(2π) θ and ϕ̄8 ≡ ϕ8 −
√

3(2π) θ, we can rewrite D0 in terms of ϕ̄3

and ϕ̄8:

iD0− 2πTθ = 2πT

(n+
1

2

)
13 +

1

4π

 ϕ̄3 + ϕ̄8√
3
− 6 θ 0 0

0 −ϕ̄3 + ϕ̄8√
3

0

0 0 −2ϕ̄8√
3


 . (C.7)

Now only the first eigenvalue of the Dirac operator depends on θ.
Let us now consider the gluonic part of the theory, that we use to compute the Polyakov

loop potential. In the adjoint representation D0 is given by

D0 = 2πTn18 + T



0 −ϕ3 0 0 0 0 0 0
ϕ3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 −ϕ3+
√

3ϕ8

2
0 0 0

0 0 0 ϕ3+
√

3ϕ8

2
0 0 0 0

0 0 0 0 0 0 ϕ3−
√

3ϕ8

2
0

0 0 0 0 0 −ϕ3+
√

3ϕ8

2
0 0

0 0 0 0 0 0 0 0


.

(C.8)
The Polyakov loop potential is given as a sum of Yang-Mills and fermionic contribution
depending on the Cartan gauge fields ϕ3, ϕ8 and on the phase θ. We write these functions
in terms of their eigenvalues:

VPol = VYM

[
ϕ3,

ϕ3 +
√

3ϕ8

2
,
ϕ3 −

√
3ϕ8

2

]

+Vferm

[
ϕ3 + ϕ8√

3

2
− 2π θ,

−ϕ3 + ϕ8√
3

2
− 2π θ,− ϕ8√

3
− 2π θ

]
(C.9)

where the eigenvalues for VYM are given by the generators in the adjoint representation
and the eigenvalues for Vferm are given by the generators in the fundamental representa-
tion. We can use the definitions of ϕ̄3 and ϕ̄8 to rewrite VPol in terms of the variables ϕ̄3

and ϕ̄8:

VPol = VYM

[
ϕ̄3 + 3 (2π) θ,

ϕ̄3 +
√

3 ϕ̄8

2
+ 3 (2π) θ,

ϕ̄3 −
√

3 ϕ̄8

2

]

+Vferm

[
ϕ̄3 + ϕ̄8√

3

2
− 3 (2π) θ,

−ϕ̄3 + ϕ̄8√
3

2
,− ϕ̄8√

3

]
. (C.10)

Performing a Roberge-Weiss transformation, we can check that the Polyakov loop poten-
tial is invariant under such a transformation:

θ → θ + θz
ϕ3 → ϕ3 + 3 (2π)θz
ϕ8 → ϕ8 +

√
3 (2π)θz

 ⇒ ϕ̄3 → ϕ̄3

ϕ̄8 → ϕ̄8.

115



C Appendix: Phase diagram

As the center element θz has a 1
3
-symmetry, the fermionic potential shows this behaviour

as well. The fermionic potential is symmetric under θ → θ + θz where θz = 0, 1
3
, 2

3
, . . . .

This invariance can be seen by performing the transformation θ → θ + 1
3
and absorbing

the remaining “1" into the Matsubara sums. Therefore, the Matsubara sum is invari-
ant under a Roberge-Weiss transformation. The YM potential is also invariant under
such transformations as a shift of the gauge fields caused by a center element θz can be
compensated by a gauge transformation, i.e. the gluonic action is invariant under center
transformations.

C.3 Numerics of the QM Model for the Dual Density

We have used the quark-meson model in local potential approximation (LPA) for a first
explicit computation of the dual density. The action of the quark-meson model reads:

Γ =

∫
d4x

(
ψ̄

(
i /D +

2πθ

β
γ0

)
ψ +

h̄√
2
ψ̄(~τ · Φ)ψ +

1

2
(∂µΦ)2 + U(Φ2)− cσ

)
+

∫
d4x

(
ZAQCD

4
F a
µνF

a
µν + Γgauge

)
, (C.11)

where ΦT = (σ, ~π). For two quark flavors, the Yukawa interaction is determined by
~τ = (1, i~σγ5) where ~σ denote the Pauli matrices 2. In LPA we employ, the wave function
renormalisations are trivial, Zψ = Zφ = 1 and the Yukawa coupling is taken to be
constant. In order to compute the dual density, we expand the chiral order-parameter
potential U(Φ2) in a power series of Φ2 up to order Φ4 and drop all higher terms, i. e.

U(ΦTΦ) = U0 +
λ

4

(
ΦTΦ− Φ2

0

)2
, (C.12)

where we have introduced the expecation value Φ0. Due to the fact that we have general-
ized the fermionic boundary conditions, the expansion coefficient of the potential depend
on θ as well. Note that we have an explicit symmetry breaking term −cσ.
The gauge action will be used to compute the Polyakov loop potential VYM that we

already mentioned in the discussion of the Roberge-Weiss periodicity of our approach. It
contains a standard Yang-Mills term and the term Γgauge entails gauge fixing terms and
probable higher order terms in the gauge fields. The confining properties of the gluons
are reflected in the Polyakov loop potential VYM and will be computed in the spirit of
[56]. Thereby we achieve a full decoupling of the quark, meson and gauge sector. Of
course, via the dynamical hadronisation procedure, the gluons couple back to the quarks
and mesons. This is described in detail in Ref. [18, 49]. At the present stage, we have
neglected the contributions to the flow arising from this procedure, it will be an extension
of the truncation that should be incorporated straightforwardly.

2The Pauli matrices should not be confused with the zeroth component of the vector Φ, namely the σ
field.
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C.3 Numerics of the QM Model for the Dual Density

In our fRG setting, we use dimensionless couplings, that are defined as:

λφ =
λ̄φ
Z2
φ

, κ =
1

2

ZφΦ2
0

k2
, h2 =

h̄2

Zφ
. (C.13)

Where λφ is the scalar coupling, m the boson mass in the symmetric phase and Φ0 the
VEV of the scalar fields. λφ and Φ0 are used to parametrise the effective potential in the
chiral symmetric and broken phases. h is the dimensionless Yukawa coupling, ε stands
for the dimensionless fermionic mass.

The QM model has been investigated in many works, using the fRG there has also
been quite some effort to compute the phase structure of QCD using extended QM
models [18, 93, 106, 151]. Thereby investigation the effects of the inclusion of the gauge
sector or the phase diagram for three-flavour QCD.

A detailed discussion of the flow equations for the model 4.9 can be found in Ref. [18].
Here we want to give a glimpse at the changes of the two-flavour theory compared to
the one-flavour case. Loosely speaking it can be said, that all terms that stem from the
Goldstone bosons carry an Nf dependence. This can be seen easily, since chiral symmetry
breaking has the symmetry breaking pattern

SUNf ⊗ SUNf → SUNf , (C.14)

therefore, we get N2
f − 1 Goldstone bosons. The scaling of the fermionic contributions is

trivially given by Nf , as in the chiral limit every quark flavour contributes equivalently.
At the example of the flow for the parameter κ, we demonstrate this. In Ref. [18] it

was computed for the one-flavour case, where the threshold functions l(B),(4)
1 used here,

can be found, it reads:

∂tκ = −(η⊥φ + 2)κ+ 6v3 l
(B),(4)
1 (t̃, mσ) + 2v3 l

(B),(4)
1 (t̃, mπ) + ∂tεferm, (C.15)

where mpsi = 0. Note that we absorbed the fermionic contributions in the last term
∂tεferm. In the presence of the phase θ, this term receives modifications and we have to
make sure, that we correctly incorporate the Roberge-Weiss symmetry, as described in
the previous section.

In the two flavour case, the flow of κ reads

∂tκ = −(η⊥φ + 2)κ+ 6v3 l
(B),(4)
1 (t̃, mσ) + (N2

f − 1)2v3 l
(B),(4)
1 (t̃, mπ) +Nf∂tεferm. (C.16)

Note that in the presence of an explicit symmetry breaking term c this term receives an
additional contribution, that we do not display. We see that the threshold function, that
contain a Goldstone propagator, gets multiplied with a factor of N2

f − 1 as we hinted at
before. The fermion contributions is trivially scaled by a factor Nf as explained above.

The flow of the four-boson coupling λ is modified equally.
On the contrary, the flow of the Yukawa coupling is not modified in the presence of

additional flavours. This is a consequence of our truncation in which we do not allow for
a flavour changing Yukawa interaction.
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C Appendix: Phase diagram

Parameter Fixing

We fix the parameters of the model at vanishing θ, which corresponds to standard
fermions. For the numerical study, we have fixed the UV parameters of the model such
that we find a quark mass mq = 0.3GeV and fπ = (1/2)Φ2

0 = (0.090GeV)2 in the IR.
These two IR-parameters fix our choice for the Yukawa coupling: h̄ = 10/3. Note that
m2
q = h2(Φ2

0/2). To be more specific, we use the following set of initial conditions for our
studies of QCD in the chiral limit:

ΛUV = 10GeV ,
c̄ = cUVΛ3

UV = −510−8 ,

εUV =
m2

k2
= 0.37803

λUV = 300 .

We then find:

c(k → 0) = −10−8 ,

κUV(k → 0) =
1

2

Φ2
0(k → 0)

k2
= 4082.01

λUV(k → 0) = 8.023 ,

which translates into

mq(k → 0) = 0.3GeV
mσ(k → 0) = 0.255GeV

1

2
Φ2

0(k → 0) = 0.090GeV . (C.17)
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D Appendix: Non-linear basis

D.1 Scale Dependence of the Fields

For the evaluation of these derivatives we need ϕ̇ and ϑ̇ in terms of ϕ and ϑ. This is
achieved by solving Eq. (5.9) for ϕ and ϑ, on which we can then take a derivative w.r.t.
to t. (t = ln(k/Λ)). We make use of the fact the Φ is t-independent, Φ̇ = 0, in particular
we get

e2iϑ/b =
Φ− (

√
ρ0 − b)

Φ∗ − (
√
ρ0 − b) ⇒ ϑ =

b

2i
ln

(
Φ− (

√
ρ0 − b)

Φ∗ − (
√
ρ0 − b)

)
ϑ̇ =

ḃ

b
ϑ+

b

2i

{ −∂t(√ρ0 − b)
Φ− (

√
ρ0 − b) −

−∂t(√ρ0 − b)
Φ∗ − (

√
ρ0 − b)

}
=

ḃ

b
ϑ+

b( ˙√ρ0 − ḃ)
2i(ϕ+ b)

(eiϑ/b − e−iϑ/b)

and

(ϕ+ b)2 = [Φ− (
√
ρ0 − b)] [Φ∗ − (

√
ρ0 − b)]

⇒ ϕ =
√

[Φ− (
√
ρ0 − b)] [Φ∗ − (

√
ρ0 − b)]− b

ϕ̇ = −ḃ− (∂t(
√
ρ0 − b))(

[
Φ− (

√
ρ0 − b)

]
+
[
Φ∗ − (

√
ρ0 − b)

]
)

2
√[

Φ− (
√
ρ0 − b)

] [
Φ∗ − (

√
ρ0 − b)

]
= −ḃ− ( ˙√ρ0 − ḃ)(ϕ+ b)

2(ϕ+ b)
(eiϑ/b + e−iϑ/b).

D.2 Flow of the Radial Mode Potential

As introduced above, the potential V is most conveniently parametrised by

V [ρ] =
λk
2

(ρ− ρ0,k)
2. (D.1)

The propagator in the flow equation, is obtained by taking derivates of the effective action
Γ with respect to the field ϕ and ϑ. By means of the chain rule, we rewrite these derivates

∂2

∂ϕ2
=
∂2ρ

∂ϕ2

∂

∂ρ
+

(
∂ρ

∂ϕ

)2
∂2

∂ρ2
(D.2)

119



D Appendix: Non-linear basis

and similiar expressions for the other derivatives that appear in the computation of Γ(2).
We display explicit expressions for the propagators and regulators in field space here:

G|ϑ=0 =
(
(Γ(2) +R)|ϑ=0

)−1
=

(
Gϕ 0
0 Gϑ

)
, (D.3)

Ṙ =

(
Ṙϕ 0

0 Ṙϑ

)
=

(
Ṙk,ϕ 0

0 Ṙk,ϑ + 2∂ϑ̇
∂ϑ
Rk,ϑ

)
. (D.4)

Note that the second term in the regulator Ṙϑ is a consequence of the second term on
the RHS of eq. (5.17). In Ṙϕ this term is zero, c.f. eq. (5.19).
We introduced the components of the propagtor, Gϕ and Gϑ

Gϕ =
(
Zϕp

2 + 2V ′ + 4ρ0V
′′ +Rk,ϕ

)−1 (D.5)

Gϑ =

(
p2(Zϑ + U(ϕ)) +

∂2ρ

∂ϑ2
V ′ +Rk,ϑ

)−1

. (D.6)

We introduced the shorthand V ′ = ∂V (ρ)/∂ρ and used ∂ρ/∂ϑ|ϑ=0 = 0. The optimised
cut-off is given by

Rk,ϕ/θ(p
2) = Zϕ/θ(k

2 − p2) θ(Zϕ/θ(k
2 − p2)) (D.7)

In the flow equations for the effective potential V the term Ψ̇i
δΓ
δΨi

is particularly simple,
since we can set ϑ = 0 = p from the beginning of the calculation. We get:

ϑ̇
∣∣∣
ϑ=0

= 0 , ϕ̇|ϑ=0 = −∂t√ρ0 ,
δΓ

δϕ

∣∣∣∣
ϑ=0

= 2(ϕ+
√
ρ0)V ′ (D.8)

The flow equation for the effective potential V reads:

V̇ − ρ̇0

(
1 +

ϕ√
ρ0

)
V ′ =

1

2

∫
ddp

(2π)d

{
Ṙk(p

2)

Zϕk2 + 2V ′ + 4ρ2V ′′
+

Ṙk(p
2) + 2∂ϑ̇

∂ϑ
Rk(p

2)

Zϑk2 + p2U(ϕ) + ∂2ρ
∂ϑ2V ′

}
(D.9)

Getting the flow equations for λ and ρ0 is straightforward.

D.3 Flow of the Goldstone Potential

Getting the flow for U is more involved, since we have to take a second derivative w.r.t.
to ϕ on Eq. (5.17) and a second derivative w.r.t. momentum p which we will set to zero
at the end of the computation. Generically this will generate loop and tadpole graphs,
shown in Fig. 5.2 We will give a detailed derivation how this arise here.
From the parameterisation eq. (5.20) and the flow equation eq. (5.17), we get the flow

of U by means of the formula

Żϑ + U̇
∣∣∣
ϑ=0=p

=
1

2d

(
∂2
p

δ2

δϑ2
Γ̇− ∂2

p

δ2

δϑ2
Φ̇i

δΓ

δΦi

)∣∣∣∣
ϑ=0=p

. (D.10)
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D.3 Flow of the Goldstone Potential

Here we introduced the shorthand ∂2
p = ∂pµ∂pµ .

It is simple algebra to work out the second term on the RHS:

ϑ̇
∣∣∣
ϑ=0

= 0 ∂ϑ̇
∂ϑ

∣∣∣
ϑ=0

= ḃ
b

+
˙√ρ0−ḃ
ϕ+b

∂2ϑ̇
∂ϑ2

∣∣∣
ϑ=0

= 0

ϕ̇|ϑ=0 = − ˙√ρ0
∂ϕ̇
∂ϑ

∣∣
ϑ=0

= 0 ∂2ϕ̇
∂ϑ2

∣∣∣
ϑ=0

=
˙√ρ0−ḃ
b2

(D.11)

Thus we only need the compute the following three terms, evaluated at zero momentum
p and ϑ = 0,

∂2
p

δ2Γ

δϑ2
= 2d(Zϑ + U(ϕ)) ∂2

p

δΓ

δϕ
= 2dZϕϕ ∂2

p

δ3Γ

δϕδϑ2
= 2dU ′(ϕ) (D.12)

and sum up all the contributions. We get eventually:

∂2
p

δ2

δϑ2
Ψ̇i

δΓ

δΨi

= 2d

[
(Zϑ + U(ϕ))

(
ḃ

b
+

˙√ρ0 − ḃ
ϕ+ b

)
− ˙√ρ0 U

′(ϕ) + Zϕ ϕ
˙√ρ0 − ḃ
b2

]
(D.13)

There is however a further approximation we make at this level. Namely, we neglect
derivatives w.r.t. to ϑ acting on δΦ̇/δΦ.

We now evaluate the second derivative of the flow of the effective action with respect
to ϑ. We start by evaluating the first (functional) derivative

δ

δϑ
Γ̇ = −1

2
Tr

[
Ṙ

Γ
(2)
k +R

Γ(3) 1

Γ
(2)
k +R

]
where Γ(3) is a derivative of Γ(2) with respect to ϑ. Then the second derivative reads:

δ2

δϑ2
Γ̇ = −1

2
Tr

[
Ṙ

Γ
(2)
k +R

Γ(4) 1

Γ
(2)
k +R

− 2
Ṙ

Γ
(2)
k +R

Γ(3) 1

Γ
(2)
k +R

Γ(3) 1

Γ
(2)
k +R

]
where Γ(4) is the second derivative of Γ(2) with respect to ϑ.

Γ(4) and Γ(3) are of course matrix-valued in field space and we should display explicit
expressions for them at this place.

Γ(3)|ϑ=0 =

(
Γ(ϕϕϑ) Γ(ϕϑϑ)

Γ(ϕϑϑ) Γ(ϑϑϑ)

)
=

[
pϑ1pϑ2U

′(ϕ) +
∂3

∂ϑ2∂ϕ
V (ρ(ϕ, ϑ))

](
0 1
1 0

)
(D.14)

Γ(4)|ϑ=0 =

(
Γ(ϕϕϑϑ) Γ(ϕϑϑϑ)

Γ(ϕϑϑϑ) Γ(ϑϑϑϑ)

)
=

(
Γ(ϕϕϑϑ) 0

0 Γ(ϑϑϑϑ)

)
(D.15)

where we define

Γ(ϕϕϑϑ) = pϑ1pϑ2U
′′(ϕ) +

∂4

∂ϑ2∂ϕ2
V (ρ(ϕ, ϑ)), (D.16)

Γ(ϑϑϑϑ) =
∂4

∂ϑ4
V (ρ(ϕ, ϑ)). (D.17)
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D Appendix: Non-linear basis

In a shorthand notation, we can write using the propagators and regulators defined before

δ2

δϑ2
Γ̇ = −1

2
Tr
[
ṘGΓ(4)G− 2ṘGΓ(3)GΓ(3)G

]
(D.18)

The first term is the tadpole term and the last term is a loop graph.
Here we can nicely see how our approximation works. Consider the derivative terms of

V in Γ(4) and Γ(3). We assume ρ and hence also V (ρ) to be a function exclusively of ϕ.
Therefore, all these derivates vanish, remember that there are derivatives w.r.t. ϑ, and we
get vertices that are always proportianal to external momenta at least of order p2. Then
if the momentum derivative acts on anything other than the vertex, the contribution from
this diagram vanishes. It is now simple algebra to evaluate the first term in eq. (D.18)
at vanishings field ϑ:

Tr

[
Ṙ

Γ
(2)
k +R

Γ(4) 1

Γ
(2)
k +R

]∣∣∣∣∣
ϑ=0

= Tr

[
ṘϕGϕΓ(ϕϕϑϑ)Gϕ 0

0 ṘϑGϑΓ(ϑϑϑϑ)Gϑ

]∣∣∣∣
ϑ=0

There are two tadpole graphs arising from this trace. However the tadpole with the
Goldstone boson propagator in the loop vanishes. This can be seen easily: Upon taking
a derivative with respect to momentum p the tadpole with the Goldstone boson in the
loop vanishes, since the four-Goldstone vertex is momentum independent, c.f. eq. (D.16).
The remaining tadpole diagram is shown in Fig 5.2. Thus the tadpole contribution to

the flow of the potential U is given by

∂2
pTr

[(
ṘϕGϕΓ(ϕϕϑϑ)Gϕ 0

0 ṘϑGϑΓ(ϑϑϑϑ)Gϑ

)]
= −1

2

∫
q

G2
ϕ(q)Ṙϕ(q)2dU ′′(ϕ), (D.19)

where the factor of 2d is a consequence of the derivative w.r.t. momentum p.
In our approximation, we have Zϕ(t) = 1. Plugging in the optimised regulator and

specifying to three dimensions, we finally get for the tadpole contribution:

−1

2
∂2
pTr

[
ṘGΓ(4)G

]
=

4

(2π)2

k5U ′′(ϕ)

(k2 + ∂2

∂ϕ2V (ρ(ϕ, ϑ))|ϑ=0)2
. (D.20)

The second term in eq. (5.30) results in two one-loop graphs.
Looking at the structure we see that it will give more complicated one-loop structures.

However the computation of the trace is readily done. The result, neglecting off-diagonal
terms, that drop out of the trace, is:

Tr
[
2ṘGΓ(3)GΓ(3)G

]∣∣∣
ϑ=0

= Tr

[
ṘϕGϕΓ(ϕϑϑ)GϑΓ(ϕϑϑ)Gϕ 0

0 ṘϑGϑΓ(ϕϑϑ)GϕΓ(ϕϑϑ)Gϑ

]
.

(D.21)
We do not explicitly give the algebraic derivation of the loop graphs. We call them L1 and
L2. L1 is the graph with the regulator insertion into the radial mode propagator, corre-
spondingly, L2 has a regulator insertion in the Goldstone propagator. The correspondig
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D.3 Flow of the Goldstone Potential

diagrams are shown in Fig 5.2. They read explicitly

L1 =

∫
ddq

(2π)d
(p · (p+ q)U ′ + V ′′′)2Ṙk(q

2)

(Zϕq2 + 2V ′ + 4ρ0V ′′ +Rk(q2))2((p+ q)2(Zϑ + U) + ∂2ρ
∂ϑ2V ′ +Rk((p+ q)2))

L2 =

∫
ddq

(2π)d
(p · (p+ q)U ′ + V ′′′)2(Ṙk(q

2) + 2∂ϑ̇
∂ϑ
Rk(q

2))

(Zϕ(p+ q)2 + 2V ′ + 4ρ0V ′′ +Rk((p+ q)2))(q2(Zϑ + U) + ∂2ρ
∂ϑ2V ′ +Rk(q2))2

,

where we introduced the shorthand V ′′′ = ∂3

∂ϑ2∂ϕ
V (ρ(ϕ, ϑ))|ϑ=0.

To get the flow of the Goldstone mode potential, we also have to apply momentum
derivatives. As mentioned above, we only consider derivatives w.r.t. momentum p acting
on the vertices. Therefore we need only evaluate the terms

∂2
p(p · (p+ q)U ′ + V ′′′)2 = 2(∂p)µ((2p+ q)µp · (p+ q)U ′2 + (2p+ q)µU

′V ′′′)

= 2((2p+ q)2U ′2 + 2dU ′V ′′′)
p→0−→ 2(q2U ′2 + 2dU ′V ′′′).
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