18 research outputs found

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods This multicentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2-week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged using MRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8 Gy in radiotherapy-naive patients, and 15 × 2.0 Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825 mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-term oncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections

    Predicting outcomes of pelvic exenteration using machine learning

    No full text
    Aim: We aim to compare machine learning with neural network performance in predicting R0 resection (R0), length of stay > 14 days (LOS), major complication rates at 30 days postoperatively (COMP) and survival greater than 1 year (SURV) for patients having pelvic exenteration for locally advanced and recurrent rectal cancer. Method: A deep learning computer was built and the programming environment was established. The PelvEx Collaborative database was used which contains anonymized data on patients who underwent pelvic exenteration for locally advanced or locally recurrent colorectal cancer between 2004 and 2014. Logistic regression, a support vector machine and an artificial neural network (ANN) were trained. Twenty per cent of the data were used as a test set for calculating prediction accuracy for R0, LOS, COMP and SURV. Model performance was measured by plotting receiver operating characteristic (ROC) curves and calculating the area under the ROC curve (AUROC). Results: Machine learning models and ANNs were trained on 1147 cases. The AUROC for all outcome predictions ranged from 0.608 to 0.793 indicating modest to moderate predictive ability. The models performed best at predicting LOS > 14 days with an AUROC of 0.793 using preoperative and operative data. Visualized logistic regression model weights indicate a varying impact of variables on the outcome in question. Conclusion: This paper highlights the potential for predictive modelling of large international databases. Current data allow moderate predictive ability of both complex ANNs and more classic methods

    The empty pelvis syndrome: a core data set from the PelvEx collaborative

    No full text
    Background: Empty pelvis syndrome (EPS) is a significant source of morbidity following pelvic exenteration (PE), but is undefined. EPS outcome reporting and descriptors of radicality of PE are inconsistent; therefore, the best approaches for prevention are unknown. To facilitate future research into EPS, the aim of this study is to define a measurable core outcome set, core descriptor set and written definition for EPS. Consensus on strategies to mitigate EPS was also explored. Method: Three-stage consensus methodology was used: longlisting with systematic review, healthcare professional event, patient engagement, and Delphi-piloting; shortlisting with two rounds of modified Delphi; and a confirmatory stage using a modified nominal group technique. This included a selection of measurement instruments, and iterative generation of a written EPS definition. Results: One hundred and three and 119 participants took part in the modified Delphi and consensus meetings, respectively. This encompassed international patient and healthcare professional representation with multidisciplinary input. Seventy statements were longlisted, seven core outcomes (bowel obstruction, enteroperineal fistula, chronic perineal sinus, infected pelvic collection, bowel obstruction, morbidity from reconstruction, re-intervention, and quality of life), and four core descriptors (magnitude of surgery, radiotherapy-induced damage, methods of reconstruction, and changes in volume of pelvic dead space) reached consensus-where applicable, measurement of these outcomes and descriptors was defined. A written definition for EPS was agreed. Conclusions: EPS is an area of unmet research and clinical need. This study provides an agreed definition and core data set for EPS to facilitate further research

    Predicting outcomes of pelvic exenteration using machine learning

    No full text
    Aim: We aim to compare machine learning with neural network performance in predicting R0 resection (R0), length of stay > 14 days (LOS), major complication rates at 30 days postoperatively (COMP) and survival greater than 1 year (SURV) for patients having pelvic exenteration for locally advanced and recurrent rectal cancer. Method: A deep learning computer was built and the programming environment was established. The PelvEx Collaborative database was used which contains anonymized data on patients who underwent pelvic exenteration for locally advanced or locally recurrent colorectal cancer between 2004 and 2014. Logistic regression, a support vector machine and an artificial neural network (ANN) were trained. Twenty per cent of the data were used as a test set for calculating prediction accuracy for R0, LOS, COMP and SURV. Model performance was measured by plotting receiver operating characteristic (ROC) curves and calculating the area under the ROC curve (AUROC). Results: Machine learning models and ANNs were trained on 1147 cases. The AUROC for all outcome predictions ranged from 0.608 to 0.793 indicating modest to moderate predictive ability. The models performed best at predicting LOS > 14 days with an AUROC of 0.793 using preoperative and operative data. Visualized logistic regression model weights indicate a varying impact of variables on the outcome in question. Conclusion: This paper highlights the potential for predictive modelling of large international databases. Current data allow moderate predictive ability of both complex ANNs and more classic methods

    Perioperative management and anaesthetic considerations in pelvic exenterations using Delphi methodology : results from the PelvEx Collaborative

    Get PDF
    Background: The multidisciplinary perioperative and anaesthetic management of patients undergoing pelvic exenteration is essential for good surgical outcomes. No clear guidelines have been established, and there is wide variation in clinical practice internationally. This consensus statement consolidates clinical experience and best practice collectively, and systematically addresses key domains in the perioperative and anaesthetic management. Methods: The modified Delphi methodology was used to achieve consensus from the PelvEx Collaborative. The process included one round of online questionnaire involving controlled feedback and structured participant response, two rounds of editing, and one round of web-based voting. It was held from December 2019 to February 2020. Consensus was defined as more than 80 per cent agreement, whereas less than 80 per cent agreement indicated low consensus. Results: The final consensus document contained 47 voted statements, across six key domains of perioperative and anaesthetic management in pelvic exenteration, comprising preoperative assessment and preparation, anaesthetic considerations, perioperative management, anticipating possible massive haemorrhage, stress response and postoperative critical care, and pain management. Consensus recommendations were developed, based on consensus agreement achieved on 34 statements. Conclusion: The perioperative and anaesthetic management of patients undergoing pelvic exenteration is best accomplished by a dedicated multidisciplinary team with relevant domain expertise in the setting of a specialized tertiary unit. This consensus statement has addressed key domains within the framework of current perioperative and anaesthetic management among patients undergoing pelvic exenteration, with an international perspective, to guide clinical practice, and has outlined areas for future clinical research

    Simultaneous pelvic exenteration and liver resection for primary rectal cancer with synchronous liver metastases: results from the PelvEx Collaborative

    No full text
    At presentation, 15-20% of patients with rectal cancer already have synchronous liver metastases. The aim of this study was to determine the surgical and survival outcomes in patients with advanced rectal cancer who underwent combined pelvic exenteration and liver (oligometastatic) resection
    corecore