165 research outputs found

    Rhythmic coma in children.

    Get PDF
    We describe a syndrome of rhythmic coma in children that consists of an invariant, nonreactive, diffuse cortical activity of a specific frequency, such as alpha, beta, spindle, or theta, recorded from a comatose child. We report 11 cases of children who were found to be in rhythmic coma during their acute illnesses. Their ages ranged from 2 to 15 years, and their diagnoses included encephalitis, head trauma, seizures, near drowning, brain tumors, stroke, and metabolic derangements. The specific frequency of the electroencephalographic pattern, ie, alpha, beta, spindle, or theta, did not influence the outcome. The clinical outcome appeared to depend on the primary disease process rather than the electroencephalographic finding. The prognosis of alpha-frequency rhythmic coma as well as of rhythmic coma in general was better in children than in adults. The pathophysiology in children may be similar, ie, the interruption of reticulothalamocortical pathways by metabolic or structural abnormalities, but the expression of this deafferentation may be more varied in the developing brain. Thus, we propose the term rhythmic coma as a unified concept for alpha, beta, spindle, and theta coma in children

    The role of the smartphone in the transition from medical student to foundation trainee: a qualitative interview and focus group study

    Get PDF
    Background The transition from medical student to junior doctor is one of the most challenging in medicine, affecting both doctor and patient health. Opportunities to support this transition have arisen from advances in mobile technology and increased smartphone ownership. Methods This qualitative study consisted of six in-depth interviews and two focus groups with Foundation Year 1 Trainees (intern doctors) and final year medical students within the same NHS Trust. A convenience sample of 14 participants was recruited using chain sampling. Interviews and focus groups were recorded, transcribed verbatim, analysed in accordance with thematic analysis and presented below in keeping with the standards for reporting qualitative research. Results Participants represented both high and low intensity users. They used their smartphones to support their prescribing practices, especially antimicrobials through the MicroGuide™ app. Instant messaging, via WhatsApp, contributed to the existing bleep system, allowing coordination of both work and learning opportunities across place and time. Clinical photographs were recognised as being against regulations but there had still been occasions of use despite this. Concerns about public and colleague perceptions were important to both students and doctors, with participants describing various tactics employed to successfully integrate phone use into their practices. Conclusion This study suggests that both final year medical students and foundation trainees use smartphones in everyday practice. Medical schools and healthcare institutions should seek to integrate such use into core curricula/training to enable safe and effective use and further ease the transition to foundation training. We recommend juniors are reminded of the potential risks to patient confidentiality associated with smartphone use

    Reduced Serotonin Reuptake Transporter (SERT) Function Causes Insulin Resistance and Hepatic Steatosis Independent of Food Intake

    Get PDF
    Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes

    Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT)

    Get PDF
    Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS

    Clinical significance of HIV-1 coreceptor usage

    Get PDF
    The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family
    corecore