3,768 research outputs found

    A note on compactly generated co-t-structures

    Full text link
    The idea of a co-t-structure is almost "dual" to that of a t-structure, but with some important differences. This note establishes co-t-structure analogues of Beligiannis and Reiten's corresponding results on compactly generated t-structures.Comment: 10 pages; details added to proofs, small correction in the main resul

    A facility for high resolution spectroscopy: Laboratory and ground based observations in support of upper atmospheric research

    Get PDF
    This research task consists of operating a facility for making spectroscopic observations in support of upper atmospheric research. The facility responds to the needs and interests of the visiting investigators. Therefore, the research objectives are not predetermined except in broad outline. The emphasis is on studies that take advantage of the particular strengths of the Fourier Transform Spectrometer on Kitt Peak: high spectral resolution combined with wide spectral range and low noise

    Generalised Moore spectra in a triangulated category

    Full text link
    In this paper we consider a construction in an arbitrary triangulated category T which resembles the notion of a Moore spectrum in algebraic topology. Namely, given a compact object C of T satisfying some finite tilting assumptions, we obtain a functor which "approximates" objects of the module category of the endomorphism algebra of C in T. This generalises and extends a construction of Jorgensen in connection with lifts of certain homological functors of derived categories. We show that this new functor is well-behaved with respect to short exact sequences and distinguished triangles, and as a consequence we obtain a new way of embedding the module category in a triangulated category. As an example of the theory, we recover Keller's canonical embedding of the module category of a path algebra of a quiver with no oriented cycles into its u-cluster category for u>1.Comment: 26 pages, improvement to exposition of the proof of Theorem 3.

    MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    Get PDF
    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone

    Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    Get PDF
    We consider the excitation dynamics of the two-photon \sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \sts transition, and has an influence on the derivation of its absolute frequency.Comment: 10 pages, 5 figure

    Implications of Source Abundances of Ultraheavy Cosmic Rays

    Get PDF
    The ratio of cosmic ray source abundance to solar-system abundance was examined for individual elements. Correlations of these ratios with first-ionization potential (FIP) and the expected mass-to-charge ratio (A/Q) of the elements in a million-degree plasma are analyzed. The FIP correlation was examined and it is shown that the correlation is affected by the choice of C2 or C1 chondritic meteorites as the solar-system standard for comparison. An A/Q correlation is suggested as a consequence of the shock acceleration model in the hot interstellar medium. The correlations are presented

    Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model

    Get PDF
    Warming and changing fire regimes in the northern (≥45°N) latitudes have consequences for land-atmosphere carbon feedbacks to climate change. A terrestrial carbon flux model integrating satellite Normalized Difference Vegetation Index and burned area records with global meteorology data was used to quantify daily vegetation gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) over a pan-boreal/Arctic domain and their sensitivity to climate variability, drought, and fire from 2000 to 2010. Model validation against regional tower carbon flux measurements showed overall good agreement for GPP (47 sites: R = 0.83, root mean square difference (RMSD) = 1.93 g C m−2 d−1) and consistency for NEE (22 sites: R = 0.56, RMSD = 1.46 g C m−2 d−1). The model simulations also tracked post-fire NEE recovery indicated from three boreal tower fire chronosequence networks but with larger model uncertainty during early succession. Annual GPP was significantly (p \u3c 0.005) larger in warmer years than in colder years, except for Eurasian boreal forest, which showed greater drought sensitivity due to characteristic warmer, drier growing seasons relative to other areas. The NEE response to climate variability and fire was mitigated by compensating changes in GPP and respiration, though NEE carbon losses were generally observed in areas with severe drought or burning. Drought and temperature variations also had larger regional impacts on GPP and NEE than fire during the study period, though fire disturbances were heterogeneous, with larger impacts on carbon fluxes for some areas and years. These results are being used to inform development of similar operational carbon products for the NASA Soil Moisture Active Passive (SMAP) mission

    Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    Full text link
    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to the hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic (QED) self-energy remainder function for states with principal quantum number n=5,...,8 and with angular momentum L=n-1 and L=n-2 are described (j = L +/- 1/2).Comment: 21 pages; LaTe
    • …
    corecore