123 research outputs found

    Pterodactyl: Control System Demonstrator Development for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The NASA-funded Pterodactyl project is a design, test, and build capability to (i) advance the current state of the art for Deployable Entry Vehicle (DEV) guidance and control (G&C), and (ii) determine the feasibility of control system integration for various entry vehicle types including those without aeroshells. This capability is currently being used to develop control systems for one such unconventional entry vehicle, the Lifting Nano-ADEPT (LNA) vehicle. ADEPT offers the possibility of integrating control systems directly onto the mechanically deployed structure and building hardware demonstrators will help assess integration and design challenges. Control systems based on aerodynamic control surfaces, mass movement, and reaction control systems (RCS) are currently being investigated for a down-select to the most suitable control architecture for the LNA.To that effect, in this submission, we detail the efforts of the Pterodactyl project to develop a series of hardware demonstrators for the different LNA control systems. Rapid prototypes, for a set of quarter- model or eighth-model vehicle segments, will be developed for all three architectures to validate mechanical design assumptions, and hardware-in-the-loop (HIWL) control approaches. A ground test control system demonstrator will be designed and built after the trade study is complete. The industrial-grade demonstrator will be designed so that it can be incorporated into a HWIL simulation to further validate the findings of the initial trade study. The HWIL simulation will leverage the iPAS environment developed at NASA's Johnson Space Center which facilitates integration testing to support technology maturation and risk reduction, necessary elements for the hardware demonstration development detailed in this paper

    Pterodactyl: Control Architectures Development for Integrated Control Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    The need to return high mass payloads is driving the development of a new class of vehicles, Deployable Entry Vehicles (DEV) for which feasible and optimized control architectures have not been developed. The Pterodactyl project, seeks to advance the current state-of-the-art for entry vehicles by developing a design, test, and build capability for DEVs that can be applied to various entry vehicle configurations. This paper details the efforts on the NASA-funded Pterodactyl project to investigate multiple control techniques for the Lifting Nano-ADEPT (LNA) DEV. We design and implement multiple control architectures on the LNA and evaluate their performance in achieving varying guidance commands during entry.First we present an overview of DEVs and the Lifting Nano-ADEPT (LNA), along with the physical LNA configuration that influences the different control designs. Existing state-of-the-art for entry vehicle control is primarily propulsive as reaction control systems (RCS) are widely employed. In this work, we analyze the feasibility of using both propulsive control systems such as RCS to generate moments, and non-propulsive control systems such as aerodynamic control surfaces and internal moving mass actuations to shift the LNA center of gravity and generate moments. For these diverse control systems, we design different multi-input multi-output (MIMO) state-feedback integral controllers based on linear quadratic regulator (LQR) optimal control methods. The control variables calculated by the controllers vary, depending on the control system being utilized and the outputs to track for the controller are either the (i) bank angle or the (ii) angle of attack and sideslip angle as determined by the desired guidance trajectory. The LQR control design technique allows the relative allocation of the control variables through the choice of the weighting matrices in the cost index. Thus, it is easy to (i) specify which and how much of a control variable to use, and (ii) utilize one control design for different control architectures by simply modifying the choice of the weighting matrices.By providing a comparative analysis of multiple control systems, configurations, and performance, this paper and the Pterodactyl project as a whole will help entry vehicle system designers and control systems engineers determine suitable control architectures for integration with DEVs and other entry vehicle types

    On the Kurosh theorem and separability properties

    Get PDF
    AbstractWe prove a Kurosh-type subgroup theorem for free products of LERF groups. This theorem permits a better understanding of how finitely generated subgroups are embedded in finite index subgroups. Consequences include the double coset separability of free products of negatively curved surface groups. Other properties of finitely generated subgroups of such free products are studied as well

    Pterodactyl: Development and Comparison of Control Architectures for a Mechanically Deployed Entry Vehicle

    Get PDF
    The Pterodactyl project, seeks to advance the current state-of-the-art for entry vehicles by developing novel guidance and control technologies for Deployable Entry Vehicles (DEVs) that can be applied to various entry vehicle configurations. This paper details the efforts on the NASA-funded Pterodactyl project to investigate and implement multiple control techniques for an asymmetric mechanical DEV. We design multiple control architectures for a Pterodactyl Baseline Vehicle (PBV) and evaluate their performance in achieving varying guidance commands during entry. The control architectures studied are (i) propulsive control systems such as reaction control systems and (ii) non-propulsive control systems such as aerodynamic control surfaces and internal moving masses. For each system, state-feedback integral controllers based on linear quadratic regulator (LQR) optimal control methods are designed to track guidance commands of either (i) bank angle or (ii) angle of attack and sideslip angle as determined by the desired guidance trajectory. All control systems are compared for a lunar return reference mission and by providing a comparative analysis of these systems, configurations, and performance, the efforts detailed in this paper and the Pterodactyl project as a whole will help entry vehicle system designers determine suitable control architectures for integration with DEVs and other entry vehicle types

    Control and Simulation of a Deployable Entry Vehicle with Aerodynamic Control Surfaces

    Get PDF
    In this paper, we investigate the static stability of a deployable entry vehicle called the Lifting Nano-ADEPT and design a control system to follow bank angle, angle-of-attack, and sideslip guidance commands. The control design, based on linear quadratic regulator optimal techniques, utilizes aerodynamic control surfaces to track angle-of-attack, sideslip angle, and bank angle commands. We demonstrate, using a nonlinear simulation environment, that the controller is able to accurately track step commands that may come from a guidance algorithm

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployed Entry Vehicle

    Get PDF
    This paper presents a trade study method used to evaluate and down-select from a set of guidance and control (G&C) system designs for a mechanically deployable entry vehicle (DEV). The Pterodactyl project, funded by NASA's Space Technology Mission Directorate (STMD), was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable, Entry Placement Technology (ADEPT) vehicle, which was successfully developed by STMD prior to this study. The Pterodactyl project designed three different G&C systems for the vehicle's precise entry, which this paper briefly discusses. This paper details the Figures of Merit (FOMs) and metrics used during the course of the project's G&C system assessment. Each G&C configuration was traded against the three FOMs categories: G&C system performance, affordability and life cycle costs, and safety and mission success. The relative importance of the FOMs was determined from the Analytical Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the project's input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to continue pursuing in the next prototyping and testing phase

    Amelogenin Supramolecular Assembly in Nanospheres Defined by a Complex Helix-Coil-PPII Helix 3D-Structure

    Get PDF
    Tooth enamel, the hardest material in the human body, is formed within a self-assembled matrix consisting mostly of amelogenin proteins. Here we have determined the complete mouse amelogenin structure under physiological conditions and defined interactions between individual domains. NMR spectroscopy revealed four major amelogenin structural motifs, including an N-terminal assembly of four α-helical segments (S9-V19, T21-P33, Y39-W45, V53-Q56), an elongated random coil region interrupted by two 310 helices (∼P60-Q117), an extended proline-rich PPII-helical region (P118-L165), and a charged hydrophilic C-terminus (L165-D180). HSQC experiments demonstrated ipsilateral interactions between terminal domains of individual amelogenin molecules, i.e. N-terminal interactions with corresponding N-termini and C-terminal interactions with corresponding C-termini, while the central random coil domain did not engage in interactions. Our HSQC spectra of the full-length amelogenin central domain region completely overlapped with spectra of the monomeric Amel-M fragment, suggesting that the central amelogenin coil region did not involve in assembly, even in assembled nanospheres. This finding was confirmed by analytical ultracentrifugation experiments. We conclude that under conditions resembling those found in the developing enamel protein matrix, amelogenin molecules form complex 3D-structures with N-terminal α-helix-like segments and C-terminal PPII-helices, which self-assemble through ipsilateral interactions at the N-terminus of the molecule

    Guidelines for developing optical clocks with 101810^{-18} fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 101810^{-18} range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1imes10181 imes 10^{-18} uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects

    Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation

    Get PDF
    CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1α triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling. © 2008 by The American Society for Cell Biology.published_or_final_versio
    corecore