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Abstract

We prove a Kurosh-type subgroup theorem for free products of LERF groups. This theorem
permits a better understanding of how 8nitely generated subgroups are embedded in 8nite index
subgroups. Consequences include the double coset separability of free products of negatively
curved surface groups. Other properties of 8nitely generated subgroups of such free products are
studied as well.
c© 2003 Elsevier Science B.V. All rights reserved.

MSC: 20E26; 20E06; 20E05

1. Introduction

A group G is said to be LERF (locally extended residually +nite) or, by some
authors, subgroup separable if given a 8nitely generated subgroup H of G (which
shall be abbreviated throughout as H6f :g: G) and g �∈ H , there exists a subgroup K
of 8nite index (which we shall write K6f :i: G) with H6K and g �∈ K . If one places
a topology on G (called the pro+nite topology [11]) by taking the collection of 8nite
index subgroups as a neighborhood basis of 1, then G is LERF if and only if all its
8nitely generated subgroups are closed. It is easy to show that 8nitely presented LERF
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groups have decidable generalized word problem. LERF was introduced by Hall in
[10] where he proved that free groups are LERF and, in fact, that one can choose K
(in the above notation) so that H is a free factor of K .
In [8], see also [13], Gitik and Rips de8ned a group G to be double coset sepa-

rable if the setwise product of two 8nitely generated subgroups of G is closed in the
pro8nite topology. They proved therein that free groups are double coset separable (an
independent proof of a more general result can be found in [14]), while Niblo proved
[12] that surface groups are double coset separable. A topological characterization of
double coset separable groups can be found in [8].
Our main theorem, Theorem 4.1, describes the structure of 8nitely generated sub-

groups of free products of LERF groups, combining elements of the topological proof
of the Kurosh Theorem [19] with those of Stallings’ proof of Hall’s theorem [18].
Straightforward corollaries of Theorem 4.1 include Hall’s Theorem [10], and the the-
orem of Burns and Romanovskii [3,15].
To state some more interesting corollaries of this result, we need to introduce a

new notion motivated by Hall’s Theorem [10]. Recall that a subgroup H6G is called
malnormal if

g �∈ H ⇒ gHg−1 ∩ H = 1:

In this case, we write H6mal G. For example, free factors are malnormal. We say that
H6G is virtually malnormal in G if there exists K6f :i: G such that H6mal K . If
every 8nitely generated subgroup of G is virtually malnormal in G, we say that G is
LVM (locally virtually malnormal). It follows from Hall’s theorem that free groups
are LVM.
One then has the following immediate corollary of [7, Theorem 1].

Theorem 1.1. Suppose that H and K are quasiconvex subgroups of a negatively
curved, LVM, LERF group G. Then the double coset HK is closed in the pro+-
nite topology on G.

Corollary 1.2. Let G be a locally quasiconvex, negatively curved, LVM, LERF group.
Then G is double coset separable.

In particular, free groups satisfy the above hypotheses; we shall see shortly that
negatively curved surface groups and, in fact, a more general class of amalgamations
of free groups do as well.
The primary application of Theorem 4.1 is then the following theorem.

Theorem 1.3. The free product of a collection of LVM, LERF groups is again an
LVM, LERF group.

Since the adjectives negatively curved and locally quasiconvex all pass through free
products [9,6] we have

Corollary 1.4. If G is a free product of negatively curved, LVM, LERF groups and
H;K6G are quasiconvex in G, then the double coset HK is closed in the pro+nite
topology.
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In particular, if the groups in question are also locally quasiconvex, then G is
double coset separable.

Since free groups, 8nite groups, and negatively curved surface groups are negatively
curved, locally quasiconvex, LVM, and LERF, the above corollary applies to free
products of such groups. Rips’ Theorem on free actions of 8nitely generated groups
on R-trees implies that (8nite) free products of free groups and negatively curved
surface groups are precisely those 8nitely generated, negatively curved groups which
can act freely on R-trees. Our result thus shows that all such groups are double coset
separable. It has been announced by Coulbois [4] that double coset separability (and an,
in fact, slightly more general notion) is always preserved by free products. His proof
is model-theoretic and does not cover the above result about products of quasiconvex
subgroups.
Our results can also be made to apply to various other local properties of LERF

groups. Let P be a property of subgroups, e.g. malnormality, being a free factor, being
a retract. We write H6P G if a subgroup H of G has property P. A group G is said
to be LVP (locally virtually P) if, for every H6f :g: G, there exists K6f :i: G such that
H6P K . For example, if P is malnormality, then LVP is LVM. Suppose P satis8es
the following properties:

A1. H6P G and H6K6G implies H6P K ;
A2. H16P G1 and H26P G2 implies H1 ∗ H26P G1 ∗ G2;
A3. 16P G, G6P G.

Then arguing exactly as we do below for LVM, LERF one can show

Theorem 1.5. A free product of LVP, LERF groups is again an LVP, LERF
group.

That malnormality satis8es the above axioms will be shown in the sequel. The
property of being a retract clearly satis8es the above axioms, as does the property of
being a free factor (A1 follows from considering an action of G on a tree with trivial
edge stabilizers and with H as a vertex stabilizer). Hence we get the following result,
also due to Burns and Romanovskii [3,15].

Theorem 1.6. Let H be the class of LERF groups G such that each +nitely generated
subgroup of G is a free factor in a +nite index subgroup of G. Then H is closed
under free products.

A more general property than being a free factor which satis8es A1–A3 is the
property: H6P G if H is a vertex group in a graph of groups decomposition of G (this
property was suggested as being of interest by D. Cohen in a private communication);
A1 is argued as per the case of a free factor; A2 follows by taking the wedge product
of the graphs of groups corresponding to G1 and to G2 at the vertices corresponding
to H1 and H2; at this wedged vertex, place the group H1 ∗ H2.
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The argument in the following section proving that certain amalgamations of free
groups over cyclic groups are LVM, also implies that the amalgamated product of
two free groups over a cyclic subgroup is LVP for the property P above. Free groups
are also LVP for this property by Hall’s Theorem [10] whence we can conclude that
8nitely generated groups acting freely on R-trees are as well.

2. Locally virtually malnormal groups

In this section, we present several basic properties of LVM groups. We begin with
some examples of malnormal subgroups. It is easy to see that a non-trivial cyclic
subgroup 〈g〉 of a free group is malnormal if and only if g is not a proper power.
Also, as alluded to earlier, free factors are always malnormal; that is, if G=H ∗L, then
H6mal G. Thus, Hall’s theorem [10] implies that free groups are LVM as previously
stated. We shall see shortly that Hall’s result also holds for free products of free groups
and 8nite groups, but fails in general for virtually free groups.
We now show that LVM groups enjoy many of the properties of free groups.

Proposition 2.1. If G is LVM, then the following hold:

(1) If H6f :g: G contains a non-trivial subgroup normal in G, then H6f :i: G;
(2) If Z(G) �= 1, then G is virtually cyclic;
(3) If H6f :g: G, g �∈ H , and gHg−1 ∩ H �= 1, then there exists K6f :i: G such that

H6K and g �∈ K ;
(4) If G is torsion-free, then G is residually +nite.

Proof. For (1), let H6mal K6f :i: G; since gHg−1 ∩ H �= 1 for all g∈G, it must be
that H =K . Since any cyclic subgroup of the center of G is normal, (2) follows from
(1). For (3), since G is LVM, we can 8nd a subgroup K such that H6mal K6f :i: G.
By the de8nition of malnormality, it follows that g �∈ K . As for (4), if G is torsion-free,
then for all g∈G, g �∈ 〈g2〉 and so an application of (3) with H = 〈g2〉 shows that we
can separate g from 1 by a 8nite index subgroup.

We do not know whether LVM groups in general are residually 8nite.
The following lemma about malnormal subgroups is straightforward and we leave

the proof to the reader.

Lemma 2.2. If H6mal K and K6mal G, then H6mal G. If H6mal G and H6K6G,
then H6mal K . In particular, if H6mal K and G = K ∗ L, then H6mal G.

The above lemma implies, in particular, that a subgroup of an LVM group is LVM.
We observe, however, that LVM is not a virtual property. For instance, Z × Z=2Z is
virtually cyclic, but not LVM since 0×Z=2Z is a 8nitely generated normal subgroup of
in8nite index, contradicting Proposition 2.1 (1). More generally, extensions of 8nitely
generated groups by in8nite groups cannot be LVM.



R. Gitik et al. / Journal of Pure and Applied Algebra 179 (2003) 87–97 91

The 8rst author observed in [7] that Scott’s result [16] implies that negatively curved
surface groups are LVM. In fact, the following more general result is true. Suppose G
is a free product of free groups with cyclic amalgamation such that the amalgamating
subgroup is malnormal in each factor. Then, given H6f :g: G, the proofs of [5, Lemma
4.5] and [6, Theorem 3.4] construct K6f :i: G with graph of groups decomposition (c.f.
[17]) such that H is a malnormal subgroup of a vertex group, and the edge groups
are cyclic with the following property: if E is an edge group contained in a vertex
group V , and g∈V \ E, then gEg−1 intersects the images in V of the edge groups
trivially. The vertex group containing H comes from the precover of [5, Lemma 4.5]
(and H is, in fact, a free factor in this vertex group), while the remainder of the graph
of groups structure in constructed in [6, Theorem 3.4]. It is a straightforward exercise,
not dissimilar to Lemma 4.3 below, to show that this data implies H6mal K . Thus
such an amalgamation is LVM. Such amalgamations are also LERF [2,5] (see also the
thesis of D. Wise), negatively curved [1], and locally quasiconvex [6, Corollary 3.8].
It is easy to see that all negatively curved surface groups arise as amalgamations of
this sort.
We end this section by giving an algebraic characterization of LVM, LERF groups.

Proposition 2.3. A group G is LVM, LERF if and only if given H6f :g: G and A ⊆ G
+nite with A ∩ H = ∅, there exists K6f :i: G such that H6mal K and K ∩ A= ∅.

Proof. Clearly the condition stated is suJcient for G to be LVM, LERF. As for
necessity, suppose H and A are as above. By LERF, there exists K16f :i: G such that
H6K1 and K1 ∩ A = ∅; by LVM, there exists K26f :i: G such that H6mal K2. By
Lemma 2.2, H6mal K = K1 ∩ K2 while, clearly, K ∩ A= ∅.

3. Geometry, LERF, and LVM

This section gives a topological condition for the fundamental group of a 2-complex
to be LERF. All 2-complexes and their morphisms will be assumed to be combinatorial.
First, we give a combinatorial version of a topological result due to Scott [16]. If L
is a 2-complex, a partial automorphism of L is an isomorphism between (possibly
empty) subcomplexes of L. It follows easily that a 8nite 2-complex has only 8nitely
many partial automorphisms.

Proposition 3.1. Suppose G is a LERF group acting without +xed points on a 2-
complex X̂ . Then given H6f :g: G and a +nite subcomplex C of X̂ =H , there exists
K6f :i: G with H6K such that the restriction of the projection map ’ : X̂ =H → X̂ =K
to C is an embedding.

Proof. Since C is 8nite, we can 8nd a 8nite lift D of C to X̂ by choosing a lift of each
closed n-cell. Let GD={g∈G|gD∩D �= ∅}. We claim GD is 8nite. Indeed, by restricting
the action of G to D, each element of GD gives rise to a partial automorphism of D
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with non-empty domain. Furthermore, since G acts without 8xed points, each element
of GD induces a distinct partial automorphism. It follows, by the remark proceeding
the proposition, that GD is 8nite. Since G is LERF, we can 8nd K6f :i: G with H6K
and (GD \ H) ∩ K = ∅.
We show ’ restricts to an embedding on C. Let e1; e2 be n-cells of C and f1; f2

be lifts of e1; e2, respectively, to D. Then ’(e1) = ’(e2) if and only if there exists
k ∈K with kf1 = f2, whence k ∈GD ∩ K ⊆ H . It follows that e1 = e2 and so ’ is an
embedding as desired.

The following result is a variant on [5, Theorem 1.1] in the case of the standard
2-complex of a group, though the proof here is diLerent.

Theorem 3.2. Let X be a connected 2-complex. Then �1(X ) is LERF if and only if
given a connected covering  :Y → X and a +nite connected subgraph C ⊆ Y , there
exists a +nite connected covering  ′ :Y ′ → X such that C ⊆ Y ′, and the diagram

� � ′

X

Y ′Y

C

commutes.

Proof. First we show suJciency. Fix a vertex v0 of X . Let H be a 8nitely generated
subgroup of G = �1(X; v0) and suppose g∈G \ H . Let  : (Y; ṽ0) → (X; v0) be the
covering with �1(Y; ṽ0) = H , let {h1; : : : ; hn} be a generating set for H , and let C be
the subgraph of Y consisting of the edges and vertices of the lifts of h1; : : : ; hn and
g starting at ṽ0. Then C is 8nite and connected. So, by assumption, there is a 8nite
connected covering  ′ : (Y ′; ṽ′0)→ (X; v0) such that  |C factors through an embedding
followed by  ′. But then �1(Y ′; ṽ′0) is a 8nite index subgroup of G containing H , but
not g. We can conclude G is LERF.
For necessity, we observe that given a cover Y and a 8nite subgraph C of Y , it

suJces to prove the statement for the cover Y1 associated to H= (�1(C))6f :g: �1(X ).
Indeed, from H6 �1(Y ) we can conclude that the covering Y1 → X factors through
 :Y → X and that the map  |C :C → X lifts to Y1. It follows directly that the lift of
 |C to Y1 is, in fact, an embedding.
So assume now that H =�1(Y ) (that is, Y =Y1), and let ’ : X̃ → X be the universal

cover. Then �1(X ) is a LERF group acting without 8xed points on the 2-complex X̃ ,
and Y = X̃ =H . The result now follows from Proposition 3.1 taking Y ′ = X̃ =K (where
K is as in the conclusion of that proposition).

We can now interpret the combination of LERF and LVM topologically.
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Corollary 3.3. In Theorem 3.2, if �1(X ) is LVM, LERF then Y ′ can be chosen so
that  (�1(C))6mal �1(Y ′).

Proof. Let G = �1(X ) and suppose that C is a 8nite graph as in the statement of
Theorem 3.2. Then H= (�1(C))6f :g: G so we can 8nd K16f :i: G such that H6mal K1.
By Theorem 3.2, there is a 8nite cover ’ :X ′ → X such that  |C factors through an
embedding followed by ’. Let K2 =�1(X ′)∩K1. Then H6mal K2 by Lemma 2.2, and
K26f :i: G. Furthermore, if  ′ :Y ′ → X is the 8nite connected covering with �1(Y ′)=K2,
then  |C factors through an embedding followed by  ′ as desired.

4. A Kurosh-type theorem

Let Gv (v∈V ) be a collection of groups. For each v∈V , choose a connected
2-complex �v with a single vertex, denoted v by abuse of notation, such that �1(�v; v)=
Gv. Such a complex will be called a vertex complex. We construct a 2-complex � as
follows: we take the disjoint union of the �v (v∈V ) and a new vertex v0; v0 is then
connected to v by an edge ev (v∈V ). It is straightforward to see that �1(�; v0)=∗v∈VGv.
Following the usual convention, we write Hg = g−1Hg for H6G and g∈G.

Theorem 4.1. Let Gv, v∈V , be a collection of LERF groups and G be the free
product of the Gv, v∈V . Suppose that H6f :g: G and A ⊆ G is +nite with H ∩
A = ∅. Then there exist: v1; : : : ; vr ∈V (not necessarily distinct); Hi6f :g: Ki6f :i: Gvi ,
i = 1; : : : ; r; g1; : : : ; gr ∈G; and subgroups F1; F2; K0 ⊆ G such that:

H = Hg1
1 ∗ · · · ∗ Hgr

r ∗ F1; K = Kg1
1 ∗ · · · ∗ Kgr

r ∗ F1 ∗ F2 ∗ K06f :i: G; (4.1)

F1; F2 are free; K0 is a +nite free product of conjugates of some of the Gv; and
K ∩ A= ∅.
Furthermore, if Gvi is LVM, i∈{1; : : : ; r}, we may take Hi6mal Ki while if Gvi is

+nite, we may take Hi = Ki.

Proof. Let � be constructed as above and � be the graph consisting of the closure
of the edges ev(v∈V ). We proceed as in the proof of Theorem 3.2 and the Kurosh
Subgroup Theorem [19, Section 4.3.9].
Let ’ : ( N�; v0) → (�; v0) be the cover corresponding to H . It is easy to see that,

for v∈V , each component of ’−1(�v) is a cover of �v. Let �′ be the subgraph of N�
obtained by lifting A and a 8nite set of generators of H to paths starting at v0. We
adjoin to �′ (without changing its name) a 8nite number of extra edges of N� so that,
for each v∈V and each component C of ’−1(�v), �′ ∩C is connected. If C is 8nite,
we add all the edges of C to �′. Let C1; : : : ; Cr be the complete set of subgraphs of
�′ which are components of �′ ∩ ’−1(�vi) for some vi ∈V (i = 1; : : : ; r).
By construction of �′, since a path from v0 can only enter �vi passing through evi ,

we can choose (i = 1; : : : ; r) a preimage vi ∈Ci of vi such that the edge evi lifts in �′

to an edge evi ending at vi. Let

Hi = ’(�1(Ci; vi))6f :g: Gvi (1 = 1; : : : ; r);
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these subgroups are 8nitely generated since the Ci are all 8nite. Choose maximal trees
for each Ci and extend to a maximal tree T of �′; then extend T to a maximal tree
NT of N�, 8rst by extending to the preimages of the vertex complexes, and then to the
preimage of �. Let gi ∈G be the image of the path in T from the initial vertex of evi
to v0. Using the usual procedure for computing the fundamental group of a graph, it
is easy to see that H = ’(�1(�′; v0)) is generated by the Hgi

i (i = 1; : : : ; r) under the
natural identi8cation of Gv as a subgroup of G and by the subgroup F1 generated by
the loops corresponding to edges of �′ ∩ ’−1(�) \ T . But calculating H using NT and
N�, we see, since all the 2-cells of N� lie in components of the ’−1(�v)(v∈Ver(�)),
that

H = Hg1
1 ∗ · · · ∗ Hgr

r ∗ F1

and F1 is free on the aforementioned set. An easier way to think of this decomposition
is to consider the usual Kurosh factorization of H , as per [19, Section 4.3.9]; then each
Hgi

i is a subgroup of one of the usual free factors, while F1 is a subgroup of the free
part.
Now, using Theorem 3.2, we can embed Ci in a 8nite cover Di of �vi (i=1; : : : ; r);

if Gvi is also LVM we can, by Corollary 3.3, choose Di so that Hi6mal �1(Di); if Gvi
is 8nite, then, by construction Ci is already a 8nite cover. Let �′′ be the union of �′

and the Di (i = 1; : : : ; r); see Fig. 1.
Let n be the largest cardinality of a preimage in �′′ of a vertex of �.
If v0 has n preimages, then, for each v∈V , we add a 8nite number of disjoint copies

of �v to �′′ so that v has exactly n preimages in the resulting (probably disconnected)
2-complex �′′′. Observe that, for each edge v0

ev→v of �, there is at most one lift of ev
to any preimage of v0 in �′′′ because all such come from N� which is a cover. Since
there are exactly n preimages of v0 and v, we can add lifts until there is exactly one
lift of ev starting from each preimage of v0. Doing this for all the edges of � results
in a 8nite cover  : (�̂; v0)→ (�; v0).
If v0 has less than n preimages in �′′, then choose v∈V with n preimages. Since v

has more preimages than v0, our previous observation implies that we can keep adding
lifts of ev until each preimage of v0 in �′′ has exactly one such lift in the resulting
graph �0. Now attach, by the endpoint, a copy of ev to each preimage of v which is not
already the endpoint of a lift of ev. In this manner, we obtain a connected 2-complex
containing �′′ such that ev has exactly n lifts and v0 exactly n preimages. Now we can
continue as in the previous case to obtain a 8nite cover  : (�̂; v0)→ (�; v0) containing
�′.
Let K = �1(�̂; v0); then K6f :i: G, H6K , and K ∩ A = ∅. Extend T to a maximal

tree T ′ of �̂ by 8rst extending the tree to the preimages of the vertex complexes, and
then to the preimage of �. Then

Hi6Ki = �1(Di; vi)6f :i: Gvi (i = 1; : : : ; r);

if Gvi is LVM, Hi6mal Ki; if Gvi is 8nite Hi=Ki. If we let F be the subgroup generated
by the loops corresponding to edges of  −1(�) \ T ′, then a calculation similar to that
above (or that in [19, Section 4.3.9]) shows that

K = Kg1
1 ∗ · · · ∗ Kgr

r ∗ F ∗ K0;



R. Gitik et al. / Journal of Pure and Applied Algebra 179 (2003) 87–97 95

Fig. 1. Constructing �′′.

where K0 is a 8nite free product of conjugates of some of the Gv coming from the
various copies of the �v needed to bring the number of preimages of each vertex up
to n, and where F is free on the aforementioned set. However, since T ′ ∩  −1(�) is
obtained by adding edges to T ∩ �′ ∩ ’−1(�), it follows that there F = F1 ∗ F2 where
F2 is generated by those loops corresponding to edges of  −1(�) \ (�′ ∪ T ′).

Corollary 4.2 (Burns [3], Romanovskii [15]). Free products of LERF groups
are LERF.

Theorem 1.3, is an immediate consequence of Theorem 4.1, Lemma 2.2 and the
following lemma.

Lemma 4.3. Suppose that Hi6mal Gi, i = 1; : : : ; n. Then

H1 ∗ · · · ∗ Hn6mal G1 ∗ · · · ∗ Gn:
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Proof. By induction, it suJces to prove that if H6mal K and J6mal L, then H ∗
J6mal K ∗ L= G. Let g∈G \ (H ∗ J ) and let

g= k1l1 · · · krlr
be a factorization in normal form; that is, ki ∈K , li ∈L and only k1; lr are permitted
to be 1.
Suppose that 1 �= m∈H ∗ J with normal form

m= h1j1 · · · hsjs:

We show that g−1mg �∈ H ∗ J . Without loss of generality, we may assume that k1 �= 1.
By induction, we may assume that k1 �∈ H (otherwise, replace m by k−11 mk1 and g by
l1 · · · krlr). If m �∈ H (that is, j1 �= 1), then g−1mg has normal form

g−1mg=

{
l−1r k−1r · · · l−11 (k−11 h1)j1 · · · hsjsk1l1 · · · krlr ; js �= 1;
l−1r k−1r · · · l−11 (k−11 h1)j1 · · · (hsk1)l1 · · · krlr otherwise:

Here we are using that k1 �∈ H implies that k−11 h1; hsk1 �= 1. Since k1 �∈ H , we can
conclude further that k−11 h1 �∈ H and so, by the normal form theorem for free products,
it follows that g−1mg �∈ H ∗ J .
If m∈H , then g−1mg has normal form

g−1mg= l−1r k−1r · · · l−11 (k−11 mk1)l1 · · · krlr :
Since k1 ∈K \H and H6mal K; k−11 mk1 �∈ H . Thus, again appealing to the normal form
theorem, we see that g−1mg �∈ H ∗ J .
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