150 research outputs found

    Conformational Basis for Asymmetric Seeding Barrier in Filaments of Three- and Four-Repeat Tau

    Get PDF
    *S Supporting Information ABSTRACT: Tau pathology in Alzheimer’s disease is intimately linked to the deposition of proteinacious filaments, which akin to infectious prions, have been proposed to spread via seeded conversion. Here we use double electron−electron resonance (DEER) spectroscopy in combination with extensive computational analysis to show that filaments of three- (3R) and four-repeat (4R) tau are conformationally distinct. Distance measurements between spin labels in the third repeat, reveal tau amyloid filaments as ensembles of known β-strand−turn−β-strand U-turn motifs. Whereas filaments seeded with 3R tau are structurally homogeneous, filaments seeded with 4R tau are heterogeneous, composed of at least three distinct conformers. These findings establish a molecular basis for the seeding barrier between different tau isoforms and offer a new powerful approach for investigating the composition and dynamics of amyloid fibril ensembles

    Monitoring Alzheimer Amyloid Peptide Aggregation by EPR

    Get PDF
    Plaques containing the aggregated β-Amyloid (Aβ) peptide in the brain are the main indicators of Alzheimer’s disease. Fibrils, the building blocks of plaques, can also be produced in vitro and consist of a regular arrangement of the peptide. The initial steps of fibril formation are not well understood and could involve smaller aggregates (oligomers) of Aβ. Such oligomers have even been implicated as the toxic agents. Here, a method to study oligomers on the time scale of aggregation is suggested. We have labeled the 40 residue Aβ peptide variant containing an N-terminal cysteine (cys-Aβ) with the MTSL [1-oxyl-2,2,5,5-tetramethyl-Δ-pyrroline-3-methyl] methanethiosulfonate spin label (SL-Aβ). Fibril formation in solutions of pure SL-Aβ and of SL-Aβ mixed with Aβ was shown by Congo-red binding and electron microscopy. Continuous-wave 9 GHz electron paramagnetic resonance reveals three fractions of different spin-label mobility: one attributed to monomeric Aβ, one to a multimer (8–15 monomers), and the last one to larger aggregates or fibrils. The approach, in principle, allows detection of oligomers on the time scale of aggregation

    Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex

    Get PDF
    Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop β10-β11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation–elongation transition

    Macrocyclic β-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide

    Get PDF
    This paper describes studies of a series of macrocyclic β-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic β-sheet peptides comprise a pentapeptide "upper" strand, two δ-linked ornithine turn units, and a "lower" strand comprising two additional residues and the β-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through β-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 β-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of β-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design

    Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach

    Get PDF
    Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies
    corecore