84 research outputs found

    Charge carrier generation in a conjugated polymer studied via ultrafast pump-push-probe experiments

    Get PDF
    Conjugated polymers find rapidly growing application in electroluminescent displays and are extensively studied for use in photovoltaics and laser diodes. For a wide range of conjugated materials ultrafast pump-probe experiments have revealed the excited state dynamics of singlet and triplet excitons as well as positively and negatively charged polarons. Charge carriers play a key role in all the above mentioned applications. However, there is yet no clear picture of the mechanisms which lead to their generation. Photocurrent excitation cross-correlation measurement on methyl-substituted ladder-type poly(para)phenyl (m-LPPP), a prototypical conjugated polymer with very appealing properties for the above mentioned applications, have suggested that charge carrier generation occurs preferentially from higher lying states during energy migration. Our approach to examining this mechanism consists of an innovative modification of the ultrafast time-resolved pump-probe technique

    Evidence for the Band-Edge Exciton of CuInS2 Nanocrystals Enables Record Efficient Large-Area Luminescent Solar Concentrators

    Get PDF
    AbstractTernary I‐III‐VI2 nanocrystals (NCs), such as CuInS2, are receiving attention as heavy‐metals‐free materials for solar cells, luminescent solar concentrators (LSCs), LEDs, and bio‐imaging. The origin of the optical properties of CuInS2 NCs are however not fully understood. A recent theoretical model suggests that their characteristic Stokes‐shifted and long‐lived luminescence arises from the structure of the valence band (VB) and predicts distinctive optical behaviours in defect‐free NCs: the quadratic dependence of the radiative decay rate and the Stokes shift on the NC radius. If confirmed, this would have crucial implications for LSCs as the solar spectral coverage ensured by low‐bandgap NCs would be accompanied by increased re‐absorption losses. Here, by studying stoichiometric CuInS2 NCs, it is revealed for the first time the spectroscopic signatures predicted for the free band‐edge exciton, thus supporting the VB‐structure model. At very low temperatures, the NCs also show dark‐state emission likely originating from enhanced electron‐hole spin interaction. The impact of the observed optical behaviours on LSCs is evaluated by Monte Carlo ray‐tracing simulations. Based on the emerging device design guidelines, optical‐grade large‐area (30×30 cm2) LSCs with optical power efficiency (OPE) as high as 6.8% are fabricated, corresponding to the highest value reported to date for large‐area devices

    Plasmonics in heavily-doped semiconductor nanocrystals

    Full text link
    Heavily-doped semiconductor nanocrystals characterized by a tunable plasmonic band have been gaining increasing attention recently. Herein, we introduce this type of materials focusing on their structural and photo physical properties. Beside their continuous-wave plasmonic response, depicted both theoretically and experimentally, we also review recent results on their transient, ultrafast response. This was successfully interpreted by adapting models of the ultrafast response of gold nanoparticles.Comment: 20 pages review paper, 15 figure

    The coherent dynamics of photoexcited green fluorescent proteins

    Get PDF
    The coherent dynamics of vibronic wave packets in the green fluorescent protein is reported. At room temperature the non-stationary dynamics following impulsive photoexcitation displays an oscillating optical transmissivity pattern with components at 67 fs (497 cm-1) and 59 fs (593 cm-1). Our results are complemented by ab initio calculations of the vibrational spectrum of the chromophore. This analysis shows the interplay between the dynamics of the aminoacidic structure and the electronic excitation in the primary optical events of green fluorescent proteins.Comment: accepted for publication in Physical Review Letter

    Ultrafast optical excitations of metallic nanostructures: from light confinement to a novel electron source

    Get PDF
    Combining ultrafast coherent spectroscopy with nano-optical microscopy techniques offers a wealth of new possibilities for exploring the structure and function of nanostructures. In this paper, we describe newly developed nano-optical methods based on short-pulse laser sources with durations in the 10 fs regime. These techniques are used to unravel some of the intricate dynamics of elementary excitations in metallic nanostructures. Specifically, we explore light localization and storage in plasmonic crystals, demonstrate field enhancement and second harmonic generation from metallic nanotips and describe a novel nanometre-sized source of electron pulses. The rapid progress in this area offers exciting new prospects for probing and controlling electron dynamics in metallic nanostructures with femtosecond temporal and nanometre spatial resolution

    Disclosing Early Excited State Relaxation Events in Prototypical Linear Carbon Chains

    Full text link
    One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypical allotrope known as carbyne, are predicted to possess outstanding mechanical, thermal, and electronic properties. Despite recent advances in the synthesis, their chemical and physical properties are still poorly understood. Here, we investigate the photophysics of a prototypical polyyne (i.e., 1D chain with alternating single and triple carbon bonds), as the simplest model of finite carbon wire and as a prototype of sp-carbon-based chains. We perform transient absorption experiments with high temporal resolution (<30 fs) on monodispersed hydrogen-capped hexayne H−-(C≡\equivC)6−_6-H synthesized by laser ablation in liquid. With the support of detailed computational studies based on ground state density functional theory (DFT) and excited state time-dependent (TD)-DFT calculations, we provide a comprehensive description of the excited state relaxation processes at early times following photoexcitation. We show that the internal conversion from a bright high-energy singlet excited state to a low-lying singlet dark state is ultrafast and takes place with a 200-fs time constant, followed by thermalization on the picosecond timescale and decay of the low-energy singlet state with hundreds of picoseconds time constant. We also show that the timescale of these processes does not depend on the end groups capping the sp-carbon chain. The understanding of the primary photo-induced events in polyynes is of key importance both for fundamental knowledge and for potential optoelectronic and light-harvesting applications of low dimensional nanostructured carbon-based materials.Comment: 24 pages, 6 figure

    Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors

    Get PDF
    We report on a monolithic polymeric microcavity laser with all dielectric mirrors realized by low-temperature electron-beam evaporation. The vertical heterostructure was realized by 9.5 TiOx∕SiOx pairs evaporated onto an active conjugated polymer, that was previously spincast onto the bottom distributed Bragg reflector (DBR). The cavity supports single-mode lasing at 509nm, with a linewidth of 1.8nm, and a lasing threshold of 84ÎŒJ∕cm2. We also report on the emission properties of the polymer we used, investigated by a pump-probe technique. These results show that low-temperature electron-beam evaporation is a powerful and straightforward fabrication technique for molecular-based fully integrable microcavity resonators

    Evidence of electron wave function delocalization in CdSe/CdS asymmetric nanocrystals

    Get PDF
    Abstract We studied the delocalization of electron wave function in asymmetric CdSe/CdS nanocrystals, consisting of a spherical CdSe dot embedded in an elongated CdS shell, by means of a pump–probe technique. By comparing the transient spectra obtained upon pumping the band edge transition of the CdSe in CdSe/CdS heterostructure and in a bare CdSe dot, we observed the delocalization of electron wave function at the CdSe/CdS interface

    The key role of interband transitions in hot-electron-modulated TiN films

    Get PDF
    Titanium nitride (TiN) is an emerging new material in the field of plasmonics, both for its linear and nonlinear optical properties. Similarly to noble metals, like, e.g., gold (Au), the giant third-order optical nonlinearity of TiN following excitation with fs-laser pulses has been attributed to the generation of hot electrons. Here we provide a numerical study of the Fermi smearing mechanism associated with photogenerated hot carriers and subsequent interband transitions modulation in TiN films. A detailed comparison with Au films is also provided, and saturation effects of the permittivity modulation for increasing pump fluence are discussed
    • 

    corecore