22 research outputs found
Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states
Scroll waves are three-dimensional analogs of spiral waves. The linear
stability spectrum of untwisted and twisted scroll waves is computed for a
two-variable reaction-diffusion model of an excitable medium. Different bands
of modes are seen to be unstable in different regions of parameter space. The
corresponding bifurcations and bifurcated states are characterized by
performing direct numerical simulations. In addition, computations of the
adjoint linear stability operator eigenmodes are also performed and serve to
obtain a number of matrix elements characterizing the long-wavelength
deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.
The different equations of motion of the central line of a slender vortex filament and their use to study perturbed vortices
A comparison between the equation of motion of the central line of a slender vortex filament deduced from a matched asymptotic expansion(A. Callegari and L. Ting) and the expansion of the equation of motion of the ad-hoc cut-off methods(S. Crow) with the cut-off length as the small asymptotic parameter is performed. It justifies the cut-off methods and gives the link between the cut-off lengths and the thickness of a viscous or inviscid vortex with an axial velocity component. The asymptotic equation of motion for an open filament is then simplified in case of a perturbed straight filament and different regimes are displayed. They depend of relatives values of the amplitude of the perturbation and the small thickness of the filament
On the motion of hairpin filaments in the atmospheric boundary layer
A recent work of Harikrishnan et al. [“Geometry and organization of coherent structures in stably stratified atmospheric boundary layers,” arXiv:2110.02253 (2021)] has revealed an abundance of hairpin-like vortex structures, oriented in a similar direction, in the turbulent patches of a stably stratified Ekman flow. In this study, hairpin-like structures are investigated by treating them as slender vortex filaments, i.e., a vortex filament whose diameter d is small when compared to its radius of curvature R. The corrected thin-tube model of Klein and Knio [“Asymptotic vorticity structure and numerical simulation of slender vortex filaments,” J. Fluid Mech. 284, 275 (1995)] is used to compute the motion of these filaments with the atmospheric boundary layer as a background flow. Our results suggest that the orientation of the hairpin filament in the spanwise direction is linked to its initial starting height under stable stratification, whereas no such dependency can be observed with the neutrally stratified background flow. An improved feature tracking scheme based on spatial overlap for tracking Q-criterion vortex structures on the direct numerical simulation data is also developed. It overcomes the limitation of using a constant threshold in time by dynamically adjusting the thresholds to accommodate the growth or deterioration of a feature. A comparison between the feature tracking and the filament simulation reveals qualitatively similar temporal developments. Finally, an extension of the asymptotic analysis of Callegari and Ting [“Motion of a curved vortex filament with decaying vortical core and axial velocity,” J. Appl. Math. 35, 148–175 (1978)] is carried out to include the effect of gravity. The results show that, in the regime considered here, a contribution from the gravity term occurs only when the tail of an infinitely long filament is tilted at an angle relative to the wall
On the motion of hair-pin filaments in the atmospheric boundary layer
A recent work of Harikrishnan et al. [arXiv:2110.02253 (2021)] has revealed an abundance of hairpin-like vortex structures, oriented in a similar direction, in the turbulent patches of a stably stratified Ekman flow. The Ekman flow over a smooth wall is a simplified configuration of the Atmospheric Boundary Layer (ABL) where effects of both stratification and rotation are present. In this study, hairpin-like structures are investigated by treating them as slender vortex filaments, i.e., a vortex filament whose diameter d is small when compared to its radius of curvature R. The corrected thin-tube model of Klein and Knio [J. Fluid Mech. (1995)] is used to compute the motion of these filaments with the ABL as a background flow. The influence of the mean background flow on the filaments is studied for two stably stratified cases and a neutrally stratified case. Our results suggest that the orientation of the hairpin filament in the spanwise direction is linked to its initial starting height under stable stratification whereas no such dependency can be observed with the neutrally stratified background flow. An improved feature tracking scheme based on spatial overlap for tracking Q-criterion vortex structures on the Direct Numerical Simulation (DNS) data is also developed. It overcomes the limitation of using a constant threshold in time by dynamically adjusting the thresholds to accommodate the growth or deterioration of a feature. A comparison between the feature tracking and the filament simulation reveals qualitatively similar temporal developments. Finally, an extension of the asymptotic analysis of Callegari and Ting [J. App. Math (1978)] is carried out to include the effect of gravity. The results show that, in the regime considered here, a contribution from the gravity term occurs only when the tail of an infinitely long filament is tilted at an angle relative to the wall
Onset of thermal ripples at the interface of an evaporating liquid
info:eu-repo/semantics/publishe
