26 research outputs found

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    Ranula as the First Symptom of HIV Infection in Young Patients.

    No full text
    Oral manifestations are often the earliest HIV signs. Salivary gland diseases are a common form of HIV expression. A ranula can occur in association with HIV. However, this manifestation is rarely considered as the disease sentinel sign. We present two cases of children consulting for a ranula, leading to the diagnosis of a previously unknown HIV infection. Case Reports. Two children, respectively, 5 and 13, were treated for a ranula by marsupialization. Relapse occurred in both cases, and thereafter, a ranula excision was performed. While the follow-up was uneventful, HIV infection was diagnosed during the patients' care. The only sign or symptom observed was the ranula. A routine HIV testing of ranula patients would have allowed earlier care.info:eu-repo/semantics/publishe

    Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients

    No full text
    It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Insights from early clinical trials assessing response to mRNA SARS-CoV-2 vaccination in immunocompromised patients

    No full text
    It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4(+) T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination

    CTLA4-Ig Effectively Controls Clinical Deterioration and Immune Condition in a Murine Model of Foxp3 Deficiency

    No full text
    Purpose: FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice. Method: We generated Foxp3-deficient mice and an appropriate clinical scoring system to enable direct comparison of lead therapeutic candidates rapamycin, nondepleting anti-CD4 antibody, and CTLA4-Ig. Results: We found distinct immunosuppressive profiles induced by each treatment, leading to unique protective combinations over distinct clinical manifestations. CTLA4-Ig provided superior breadth of protective outcomes, including highly efficient protection during the transplantation process. Conclusion: These results highlight the mechanistic diversity of pathogenic pathways initiated by regulatory T cell loss and suggest CTLA4-Ig as a potentially superior therapeutic option for FOXP3-deficient patients.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore