74 research outputs found

    No barrier to emergence of bathyal king crabs on the Antarctic shelf

    Get PDF
    Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010‒2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼4.5 individuals × 1,000 m(−2) within a depth range of 1,100‒1,500 m (overall observed depth range 841–2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids—echinoderms and mollusks—were abundant on the upper slope (550–800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore

    The use of computer-assisted motion analysis for quantitative studies of the behaviour of barnacle (Balanus amphitrite) larvae

    No full text
    10 páginas, 3 figuras, 1 tabla.The effects of larval density and age on pre-settlement swimming behaviour of Balanus amphitrite cyprid larvae were studied with the aid of computer-assisted motion analysis. Swimming behaviour was monitored in individual, in groups of 10–15 and in groups of 50–100 cyprids. There was a small, but significant effect of larval density on swimming speed and no effect on two other quantitative measures: rate of change of direction and net-to-gross displacement ratio. There was also small but significant variation in swimming speed between different batches of cyprids over the course of 2 years. Swimming behaviour of individual cyprid larvae was also monitored daily for 7 days, with the larvae maintained in the cold and dark between measurements to prevent settlement and metamorphosis. There were no significant behavioural differences observed over time indicating that larvae may be held in this manner experimentally without affecting these parameters.This work was funded in part by J.B.M.’s Polar and Marine Biology Endowed Professorship and by the National Oceanic and Atmospheric Administration (NOAA), the US Department of Commerce under grant no. R/MT-40 to C.D.A. and J.B.M., the Mississippi–Alabama Sea Grant Consortium, and the University of Alabama at Birmingham.Peer reviewe

    Antarctic crustacean grazer assmblages exhibit resistance following exposure to decreased pH

    No full text
    Anthropogenic atmospheric CO2 concentrations are increasing rapidly, resulting in declining seawater pH (ocean acidification). The majority of ocean acidification research to date has focused on the effects of decreased pH in single-species experiments. To assess how decreased pH may influence natural macroalgal-grazer assemblages, we conducted a mesocosm experiment with the common, chemically defended Antarctic brown macroalga Desmarestia menziesii and natural densities of its associated grazer assemblage, predominantly amphipods. Grazer assemblages were collected from the immediate vicinity of Palmer Station (64°46′S, 64°03′W) in March 2013. Assemblages were exposed for 30 days to three levels of pH representing present-day mean summer ambient conditions (pH 8.0), predicted near-future conditions (2100, pH 7.7), and distant-future conditions (pH 7.3). A significant difference was observed in the composition of mesograzer assemblages in the lowest pH treatment (pH 7.3). The differences between assemblages exposed to pH 7.3 and those maintained in the other two treatments were driven primarily by decreases in the abundance of the amphipod Metaleptamphopus pectinatus with decreasing pH, reduced copepod abundance at pH 7.7, and elevated ostracod abundance at pH 7.7. Generally, the assemblages maintained at pH 7.7 were not significantly different from those at ambient pH, demonstrating resistance to short-term decreased pH. The relatively high prevalence of generalist amphipods may have contributed to a net stabilizing effect on the assemblages exposed to decreased pH. Overall, our results suggest that crustacean grazer assemblages associated with D. menziesii, the dominant brown macroalgal species of the western Antarctic Peninsula, may be resistant to short-term near-future decreases in seawater pH

    Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula

    No full text
    Abstract The communities of gammaridean amphipods associated with eight dominant macroalgal species were examined near Palmer Station, Western Antarctic Peninsula. A total of 78,415 individuals belonging to 32 amphipod taxa were identified with mean densities ranging up to 20 individuals/g algal wet wt. The most abundant amphipod taxon, Metaleptamphopus pectinatus, was found to associate predominately with the brown alga Desmarestia menziesii, while the second most common taxon, Jassa spp. occurred primarily on the red alga Gigartina skottsbergii. Non-metric multidimensional scaling analysis demonstrated that the population densities of each amphipod species and amphipod species composition were similar on the same algal species but dissimilar on different species of algae. Comparisons of amphipod communities associated with a given algal species but from different sampling sites indicated that although the structure of species-specific macroalgal-associated amphipod communities can vary across spatial scales of 3 km, 50% of the macroalgal species examined showed no significant inter-site differences in associated amphipod community structure. Spearman rank correlation analyses showed that higher abundances of amphipods occurred on the macroalgae with the highest number of branches. As many Antarctic amphipods are known consumers of macroalgae, their remarkable abundances are likely to play a significant role in mediating energy and nutrient transfer in nearshore Antarctic Peninsular macroalgal communities

    Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula

    Get PDF
    The palatability of 35 non-encrusting, subtidal macroalgal species collected from the vicinity of Palmer Station, Antarctica (64°46’S, 64°03’W), was determined in laboratory bioassays utilizing sympatric sea stars and fish known to consume macroalgae in nature. Overall, 63% of the macroalgal species offered to sea stars and 83% of the macroalgal species offered to fish in thallus bioassays were significantly unpalatable. This included all of the ecologically dominant, overstory brown macroalgae in the region. When organic extracts of unpalatable macroalgal species were incorporated into artificial foods, 76% of the species unpalatable as thallus to sea stars were also unpalatable to them as extract, and 53% of the species unpalatable as thallus to fish were also unpalatable to them as extract. If either sea stars or fish rejected thallus of a macroalgal species, palatability of organic extracts of that species to herbivorous amphipods was determined: 63% of such algal species were unpalatable as extract to the amphipods. It was concluded that antarctic macroalgae are commonly unpalatable to sympatric consumers and that much of this unpalatability is the result of chemical defenses. As a whole, neither thallus toughness nor a variety of nutritional quality parameters appeared to be related to macroalgal palatability. We also tested the hypothesis that nitrogen-containing metabolites should be common in macroalgae from nitrogen-replete, carbon-limited environments such as the coastal waters of Antarctica. Macroalgal acid extracts targeting nitrogenous secondary metabolites were subjected to thin-layer chromatography analysis; no such compounds were detected
    • …
    corecore