299 research outputs found

    Characteristics of geriatric DM patients

    Get PDF
    n/

    Update on prevention of diabetic foot ulcer

    Get PDF
    The diabetic foot ulcer is the most important reason for non-traumatic limb amputation. Based on recent data, it has been estimated that up to 34% of type 2 diabetes patients may develop diabetic foot ulcers once in their lifetime. Risk factors for developing foot ulcers are distal sensorimotor peripheral neuropathy, peripheral arterial disease, previous ulcers, and/or amputations. Understanding the factors that place patients with diabetes mellitus at high ulceration risk and the early treatment of risk factors, and continuous education of the patient (and/or caregivers) are essential for the prevention and management of diabetic foot complications. Implementing strategies to prevent these complications is a key aspect of diabetes care, but the most effective strategy in prevention has to be investigated. More evidence from well-designed studies is needed on this topic

    A case of aspirin-resistance probably related to glycemic excursion

    Get PDF
    Diabetes is characterised by development of specific microvascular complications and by a high incidence of accelerated atherosclerosis. Several Authors demonstrated that post-prandial hyperglycaemia is certainly an independent risk factor of vascular complications in type 2 diabetes. The endothelial dysfunction, the oxidative stress, the post-prandial hyperglycaemia and the haemostatic and thrombotic parameters alterations are the principal causes for the cardiovascular risk increase in diabetic patient. For this reason many studies on anti-platelet therapy have been made in order to reduce thrombotic complication of diabetes mellitus. However, data suggest that the clinical efficacy of low-dose aspirin in patients with diabetes is substantially lower than in individuals without diabetes. Indeed, several evidences support the hypothesis that diabetes might represent a case of “aspirin resistance”

    Evidence for human diabetic cardiomyopathy.

    Get PDF
    Growing interest has been accumulated in the definition of worsening effects of diabetes in the cardiovascular system. This is associated with epidemiological data regarding the high incidence of heart failure (HF) in diabetic patients. To investigate the detrimental effects both of hyperglycemia and insulin resistance, a lot of preclinical models were developed. However, the evidence of pathogenic and histological alterations of the so-called diabetic cardiomyopathy (DCM) is still poorly understood in humans. Here, we provide a stringent literature analysis to investigate unique data regarding human DCM. This approach established that lipotoxic-related events might play a central role in the initiation and progression of human DCM. The major limitation in the acquisition of human data is due to the fact of heart specimen availability. Postmortem analysis revealed the end stage of the disease; thus, we need to gain knowledge on the pathogenic events from the early stages until cardiac fibrosis underlying the end-stage HF

    Cardiac Resynchronization Therapy Outcomes in Type 2 Diabetic Patients: Role of MicroRNA Changes

    Get PDF
    Heart failure (HF) and type 2 diabetes mellitus (T2DM) are two growing and related diseases in general population and particularly in elderly people. In selected patients affected by HF and severe dysfunction of left ventricle ejection fraction (LVEF), with left bundle brunch block, the cardiac resynchronization therapy with a defibrillator (CRT) is the treatment of choice to improve symptoms, NYHA class, and quality of life. CRT effects are related to alterations in genes and microRNAs (miRs) expression, which regulate cardiac processes involved in cardiac apoptosis, cardiac fibrosis, cardiac hypertrophy and angiogenesis, and membrane channel ionic currents. Different studies have shown a different prognosis in T2DM patients and T2DM elderly patients treated by CRT-D. We reviewed the literature data on CRT-D effect on adult and elderly patients with T2DM as compared with nondiabetic patients

    Cardiac resynchronization therapy and its effects in patients with type 2 DIAbetes mellitus OPTimized in automatic vs. echo guided approach. Data from the DIA-OPTA investigators

    Get PDF
    Objectives: To evaluate the effects of cardiac resynchronization therapy (CRTd) in patients with type 2 diabetes mellitus (T2DM) optimized via automatic vs. echocardiography-guided approach. Background: The suboptimal atrio-ventricular (AV) and inter-ventricular (VV) delays optimization reduces CRTd response. Therefore, we hypothesized that automatic CRTd optimization might improve clinical outcomes in T2DM patients. Methods: We designed a prospective, multicenter study to recruit, from October 2016 to June 2019, 191 consecutive failing heart patients with T2DM, and candidate to receive a CRTd. Study outcomes were CRTd responders rate, hospitalizations for heart failure (HF) worsening, cardiac deaths and all cause of deaths in T2DM patients treated with CRTd and randomly optimized via automatic (n 93) vs. echocardiography-guided (n 98) approach at 12 months of follow-up. Results: We had a significant difference in the rate of CRTd responders (68 (73.1%) vs. 58 (59.2%), p 0.038), and hospitalizations for HF worsening (12 (16.1%) vs. 22 (22.4%), p 0.030) in automatic vs. echocardiography-guided group of patients. At multivariate Cox regression analysis, the automatic guided approach (3.636 [1.271–10.399], CI 95%, p 0.016) and baseline highest values of atrium pressure (automatic SonR values, 2.863 [1.537–6.231], CI 95%, p 0.006) predicted rate of CRTd responders. In automatic group, we had significant difference in SonR values comparing the rate of CRTd responders vs. non responders (1.24 ± 0.72 g vs. 0.58 ± 0.46 g (follow-up), p 0.001), the rate of hospitalizations for HF worsening events (0.48 ± 0.29 g vs. 1.18 ± 0.43 g, p 0.001), and the rate of cardiac deaths (1.13 ± 0.72 g vs. 0.65 ± 0.69 g, p 0.047). Conclusions: Automatic optimization increased CRTd responders rate, and reduced hospitalizations for HF worsening. Intriguingly, automatic CRTd and highest baseline values of SonR could be predictive of CRTd responders. Notably, there was a significant difference in SonR values for CRTd responders vs. non responders, and about hospitalizations for HF worsening and cardiac deaths. Clinical trial ClinicalTrials.gov Identifier NCT04547244. © 2020, The Author(s)

    Cardiac Hypertrophy: from Pathophysiological Mechanisms to Heart Failure Development

    Get PDF
    Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca2+-handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention

    Bone fragility in patients with diabetes mellitus: A consensus statement from the working group of the Italian Diabetes Society (SID), Italian Society of Endocrinology (SIE), Italian Society of Gerontology and Geriatrics (SIGG), Italian Society of Orthopaedics and Traumatology (SIOT)

    Get PDF
    Bone fragility is one of the possible complications of diabetes, either type 1 (T1D) or type 2 (T2D). Bone fragility can affect patients of different age and with different disease severity depending on type of diabetes, disease duration and the presence of other complications. Fracture risk assessment should be started at different stages in the natural history of the disease depending on the type of diabetes and other risk factors. The risk of fracture in T1D is higher than in T2D, imposing a much earlier screening and therapeutic intervention that should also take into account a patient's life expectancy, diabetes complications etc. The therapeutic armamentarium for T2D has been enriched with drugs that may influence bone metabolism, and clinicians should be aware of these effects.Considering the complexity of diabetes and osteoporosis and the range of variables that influ-ence treatment choices in a given individual, the Working Group on bone fragility in patients with diabetes mellitus has identified and issued recommendations based on the variables that should guide screening of bone fragility and management of diabetes and bone fragility: (A) ge, (B)MD, (C)omplications, (D)uration of disease, & (F)ractures (ABCD&F). Consideration of these parameters may help clinicians identify the best time for screening, the appropriate glycaemic target and anti-osteoporosis drug for patients with diabetes at risk of or with bone fragility.(c)& nbsp;2021 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved

    Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes

    Get PDF
    Both incidence and mortality of acute coronary syndrome (ACS) among diabetic patients are much higher than those among nondiabetics. Actually, there are many studies that addressed glycemic control and CV risk, whilst the literature on the role of tight glycemic control during ACS is currently poor. Therefore, in this review, we critically discussed the studies that investigated this specific topic. Hyperglycemia is implicated in vascular damage and cardiac myocyte death through different molecular mechanisms as advanced glycation end products, protein kinase C, polyol pathway flux, and the hexosamine pathway. Moreover, high FFA concentrations may be toxic in acute ischemic myocardium due to several mechanisms, thus leading to endothelial dysfunction. A reduction in free fatty acid plasma levels and an increased availability of glucose can be achieved by using a glucose-insulin-potassium infusion (GIKi) during AMI. The GIKi is associated with an improvement of either long-term prognosis or left ventricular mechanical performance. DIGAMI studies suggested blood glucose level as a significant and independent mortality predictor among diabetic patients with recent ACS, enhancing the important role of glucose control in their management. Several mechanisms supporting the protective role of tight glycemic control during ACS, as well as position statements of Scientific Societies, were highlighted
    • …
    corecore