29 research outputs found
A Mycobacterium leprae Hsp65 Mutant as a Candidate for Mitigating Lupus Aggravation in Mice
Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K409A pep synthetic peptides, which cover residues 352–371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K409A+Leader pep or K409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352–371 region. The number of interactions observed for WT is much higher than for Hsp65 K409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F1 mice were inoculated with Hsp60 or K409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases
Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate
Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (Csa´rdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin
Premolis semirufa (Walker, 1856) Envenomation, Disease Affecting Rubber Tappers of the Amazon: Searching for Caterpillar-Bristles Toxic Components
Pararama, the popular name of the larval form of the moth Premolis semirufa inhabits rubber plantations in the Amazon region and the accidental contact of the skin with the caterpillar's bristles or cocoons results in immediate and intense heat, pain, edema, and itching. In many cases a chronic inflammatory reaction with immobilization of the joints occurs. The current study has evaluated the biological and immunochemical characteristics of the Pararama caterpillar bristles extract. Electrophoretic analysis showed the presence of several components, including a very intense 82 kDa band. This latter component was endowed with intense gelatinolytic activity, as observed in zymography assays. Further analysis revealed that the extract also contained hyaluronidase activity but is devoid of phospholipase A2 activity. In vivo assays, using mice, showed that the extract was not lethal, but caused significant edema and induced intense infiltration of inflammatory cells to the envenomation site. The extract also induced high specific antibody titers, but no autoantibodies were detected. The data obtained, so far, demonstrate the existence of a mixture of different enzymes in the bristles of Premolis semirufa caterpillar, which can act together in the generation and development of the clinical manifestations of the Pararama envenomation
Towards Valuing Climate Change Impacts on the Ecosystem Services of a Uruguayan Coastal Lagoon
It has been well established that coastal zones in Latin America are particularly vulnerable to anthropogenic pressures including climate change impacts (e.g. sea-level rise, increased storm intensity, altered hydrological regimes, etc.). The twin challenge of maintaining human security (often via protection using dikes) and sustaining coastal ecosystems and the services they provide has been identified as a major issue for coastal management (Nicholls et al. 2010). This study was motivated by the dual observation that there are very few estimates of the local costs of climate change in developing countries and that the few studies that do exist rarely take into account the non-market value of ecosystem services. Using a case study of a coastal lagoon ecosystem in Uruguay, a preliminary interdisciplinary analysis that isolates changes in the economic value of ecosystem services was undertaken, which can be associated with historical climatic changes. The Economics of Ecosystems and Biodiversity (TEEB) framework is adapted to identify lagoon ecosystem services and three valuation methodologies are implemented to estimate non-market monetary values of climate change impacts on the artisanal shrimp fishery, carbon sequestration and habitat services. The results suggest that climate change is already affecting the economic value of the coastal lagoon ecosystem. Implications for local management and lessons learned from the case study are discussed