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Abstract In this study we introduce two new node-

weighted difference measures on complex networks as a

tool for climate model evaluation. The approach facilitates

the quantification of a model’s ability to reproduce the

spatial covariability structure of climatological time series.

We apply our methodology to compare the performance of

a statistical and a dynamical regional climate model sim-

ulating the South American climate, as represented by the

variables 2 m temperature, precipitation, sea level pressure,

and geopotential height field at 500 hPa. For each variable,

networks are constructed from the model outputs and

evaluated against a reference network, derived from the

ERA-Interim reanalysis, which also drives the models. We

compare two network characteristics, the (linear) adjacency

structure and the (nonlinear) clustering structure, and relate

our findings to conventional methods of model evaluation.

To set a benchmark, we construct different types of random

networks and compare them alongside the climate model

networks. Our main findings are: (1) The linear network

structure is better reproduced by the statistical model sta-

tistical analogue resampling scheme (STARS) in summer

and winter for all variables except the geopotential height

field, where the dynamical model CCLM prevails. (2) For

the nonlinear comparison, the seasonal differences are

more pronounced and CCLM performs almost as well as

STARS in summer (except for sea level pressure), while

STARS performs better in winter for all variables.

Keywords Climate model evaluation � Complex

networks � South American climate � Network comparison

1 Introduction

Almost a decade after the introduction of complex network

methods into climate science (Tsonis and Roebber 2004),

network-based model validation techniques are still few

and far between. Climate networks associate geographic

locations with nodes (also called vertices) of a mathemat-

ical object called network or graph (Newman 2009). The

connections between nodes (called links or edges) repre-

sent similarities between climatological time series at those

locations, derived mostly from reanalyses or remote sens-

ing data. The mathematical field of complex network the-

ory has thrived over the past decades (Strogatz 2001) and

now offers a variety of methods to uncover different

aspects of the topological structure of networks (Newman

2003; Cohen and Havlin 2008).
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Applied to the climate system, these methods have

already lead to several substantial new insights: From the

identification of dynamical transitions (Tsonis et al. 2007)

and teleconnections (Donges et al. 2009b), via the study of

El Niño (Yamasaki et al. 2008; Gozolchiani et al. 2011)

and monsoon systems (Malik et al. 2011; Boers et al.

2013), to actual predictive power (Ludescher et al. 2013). It

has been demonstrated that data-based climate networks

show remarkable versatility. The model-based branch of

the framework is far less developed, although recent

attempts by Steinhaeuser and Tsonis (2013) and Fountalis

et al. (2013) show the growing interest in the use of net-

work methods for climate model intercomparison and cli-

mate model analysis (van der Mheen et al. 2013).

From a theoretical point of view, evaluating the network

structure of modeled climate data constitutes a promising

extension to conventional evaluation techniques like the

comparison of annual cycles or seasonal means. While the

latter approaches investigate properties of time series at

each geographical location individually, climate net-

works describe their covariability and thus represent an

essentially different aspect of spatio-temporal climate

variability.

The intention of this paper is to propose a new method

to evaluate climate models by means of complex networks.

For this purpose, we compare the structural similarity of

climate networks obtained from models to those obtained

from reanalysis data (the reference networks). The differ-

ences between them are considered proxies for the quality

of the underlying modeling, here the simulation of the

South American climate as performed by a dynamical

(CCLM) and a statistical (STARS) regional climate model

(RCM). This work is to be seen as both an introduction of

the methodology, and as a case study on the feasibility of

the application of CCLM and STARS to South American

climate.

With our methodology, we aim at a direct comparison of

the network structure, which has the advantage of including

all available information about the complex networks

under study. Any kind of preprocessing of the networks,

e.g. a clustering of nodes, bears the inherent danger of

adding spurious information or diminishing the complexity

of the network structure, possibly stripping it of relevant

features.

One of the applied network difference measures is a

modification of the Hamming distance, which is rooted in

information theory (Hamming 1950) and has found plenty

of applications, often in combination with complex net-

work analysis (Donges et al. 2009a; Zhou et al. 2006;

Ciliberti et al. 2007). We also compare the clustering

structures (Watts and Strogatz 1998) of the observed and

modeled networks by computing the root-mean-square

distance of their respective fields of local clustering

coefficients in order to evaluate the recreation of nonlinear

dependencies by the models.

It should be noted that, comparing the spatial statistical

interdependency structure within climatological fields, our

method is related to approaches based on empirical

orthogonal functions and teleconnection patterns (Handorf

and Dethloff 2012; Stoner et al. 2009), yet distinct due to

the inclusion of information about nonlinear interrelations

(Donges et al. 2013b).

In the next section, we outline the key features of the

two particular RCMs under study and describe the simu-

lation setup (Sect. 2). The methodology of network-based

model evaluation is presented in Sect. 3 and its results are

given in Sect. 4, where we compare the output of simula-

tions of the regional climate of South America, followed by

a discussion on the robustness of the method. Finally, we

draw conclusions and give an outlook on possible further

applications in Sect. 5.

2 Regional climate modeling

Simulating meteorological processes on the mesoscale and

below, regional climate models bridge the gap between

general circulation models (GCMs), which operate on a

global scale at rather coarse horizontal resolution

(*100 km), and climate impact models, which focus on

specific processes or features in a confined region such as

hydrology, agricultural production, forestry, etc. (Gutsch

et al. 2011; Reyer et al. 2013). For climate projections,

impact models are typically driven by RCMs, which in turn

downscale GCM data (Stocker et al. 2013). Although, with

ever growing computational power, the border between

global and regional modeling might become blurry and

eventually disappear, for the time being, RCMs are still

frequently found in the impact modeling chain. To illus-

trate our evaluation method we examine RCM simulations.

Since this work is about the evaluation procedure rather

than climate projections, we only produce hindcasts driven

by the ERA-Interim reanalysis data (Dee et al. 2011).

2.1 The statistical approach: STARS

The statistical analogue resampling scheme (STARS) was

originally developed in order to provide climate realiza-

tions for impact models (Werner and Gerstengarbe 1997),

but has since been successfully applied for regional climate

projections (Orlowsky and Fraedrich 2008; Orlowsky et al.

2008, 2010; Lutz et al. 2013). The general idea is to sto-

chastically resample meteorological data according to a

given trend of some meteorological variable. Typically,

temperature is chosen as the trend variable since this is the

natural choice in the context of global warming and since
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trends of other variables like precipitation are often less

robust.

A sketch of the model’s workflow is shown in Fig. 1. At

first, as a form of biased bootstrapping, observations (or, in

this case, reanalysis data) are resampled as entire years in

order to approximately match a prescribed trend line. The

match is further improved by replacing blocks of 12 days in

an iterative process. The resulting date-to-date mapping is

then applied to all variables and all locations. Thereby, the

simulation output is guaranteed to be physically consistent,

within the limits of the input data’s consistency.

STARS can only produce output which has been

observed rather than create entirely new situations like a

dynamical model. For example, no new extreme values can

be simulated. It should also be noted that uncertainties in

the input data will propagate into the simulation. Apart

from the quality, the availability of data is also a key

constraint on the applicability of STARS. As a rule of

thumb, the length of the simulation period should not be

longer than the observation period in order to prevent

unnaturally low variability in the model output. Thus, since

the ERA-Interim dataset starts in 1979, we used the input

data from 1979 to 1995 to simulate the period from 1996 to

2011, prescribing the temperature trend of the reanalysis

during the simulation period.

Due to the statistical nature and low computational

demands of STARS, it is possible to obtain ensembles of

climate realizations in very short time, which makes this

model ideal for studying a whole range of possible sce-

narios. For this study, we generated an ensemble of 200

realizations using STARS version 2.4.

2.2 The dynamical approach: CCLM

The COSMO-CLM (CCLM, Rockel et al. 2008) is the

climate version of the COSMO-Model (Baldauf et al.

Fig. 1 Basic principle of

STARS: at first (top panel),

entire years from the

observation period are

resampled for their yearly

means (red dots) to approximate

a prescribed trend line (blue).

Then, by iteratively replacing

12-day blocks (bottom panel),

the resulting time series is

further tuned to improve the

matching of the actual (red dot)

and prescribed (blue dot) yearly

mean values
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Fig. 2 CCLM’s domain of computation including the sponge frame

(colored), the CORDEX-South-America domain (dotted), and the

common domain of evaluation (dashed). Colors indicate surface

height
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2011), which is the operational numerical weather predic-

tion model of the German Weather Service and other

members of the COSMO consortium. The development of

CCLM is steered by the CLM Community which has more

than 50 member institutions from Europe, Asia, Africa and

America. The model has been extensively applied to

European domains (e.g. Jaeger et al. 2008; Zahn and Storch

2008; Hohenegger et al. 2009; Davin and Seneviratne

2011) but also to the Indian subcontinent (Dobler and

Ahrens 2010), to CORDEX-East-Asia (Fischer et al. 2013),

and to CORDEX-Africa (Nikulin et al. 2012). One of the

very first applications was to South America (Böhm et al.

2003) but it has been run there rarely afterwards (Rockel

and Geyer 2008; Wagner et al. 2011). CCLM is dynamical

in the sense that it solves thermohydrodynamical equations

describing the atmospheric circulation. The equations are

discretized on a three-dimensional grid based on a rotated

geographical coordinate system.

In this study the CCLM version 4.25.3 was used.

Deviating from its default configuration, the model was run

with 40 vertical levels, reaching up to 30 km above sea

level and a Rayleigh damping height of 18 km, as has been

suggested for tropical regions (Panitz et al. 2013). We set

the bottom of the deepest hydrologically active soil layer to

8 m, since rain forest roots go down to such depths (Baker

et al. 2008). The numerical integration was performed with

a total variation diminishing Runge–Kutta scheme (Liu

et al. 1994) and a Bott advection scheme (Bott 1989), since

both are supposedly more accurate than their default

alternatives. We employ an implementation of the EC-

MWF IFS Cy33r1 convection scheme (Bechtold et al.

2008) and diagnose subgrid-scale clouds by a normalized

saturation deficit criterion (Sommeria and Deardorff 1977).

Additionally, a few tuning parameters were adjusted during

preceding sensitivity experiments. Particularly, changing

the convective parametrization and the subgrid-scale cloud

scheme led to major improvements of the model perfor-

mance over South America. These findings are presented in

detail in a separate paper (Lange et al. 2014).

We run the model on the CORDEX-South-America

domain (Giorgi et al. 2009) as displayed in Fig. 2. This

implies a horizontal resolution 0.44� and 166 9 187 grid

points including a 10 grid points wide sponge frame. The

simulation covers the years 1979–2011 where the first

17 years serve as spinup time, since the STARS output is

only available from 1996.

2.3 Common domain of evaluation

In order to construct climate networks of the same spatial

embedding, both model outputs were to match in resolution

and geographical boundaries. We chose a section of the

native ERA-Interim grid, encompassing the South

American mainland (Fig. 2): 82.3�W–33.8�W and 13.7�N–

55.8�S. The resolution is approximately 0.7� in both lati-

tude / and longitude k. This makes for a bounding box of

N ¼ N/ � Nk ¼ 100� 70 ¼ 7;000 grid cells, which will

be represented by nodes in the subsequently constructed

climate networks. Since this is a regular Gaussian grid of

considerable latitudinal extent, grid cells at different lati-

tudes represent differently sized areas (about 78 km�
78 km ¼ 6;084 km2 at the equator and 44 km� 78 km ¼
3;432 km2 at the southern boundary)—an effect we take

into account by introducing area-proportional node weights

(cf. Sect. 3.3).

Since STARS only resamples the input data, its output is

already on the native ERA-Interim grid. CCLM output was

remapped, conservatively (Jones 1999) in case of precipi-

tation and bilinearly otherwise.

3 Methodology

After some introductory definitions from complex network

theory (Newman 2003; Boccaletti et al. 2006), we move on

to present the two essential parts of our methodology: The

construction of spatially embedded networks and their

comparison.

3.1 Basic definitions

A network (Newman 2009) or graph G ¼ ðN;EÞ consists

of a node set N ¼ f1; . . .;Ng of nodes or vertices,

potentially pairwise connected by links or edges, consti-

tuting an edge set E � ffi; jg : i 6¼ j 2Ng. Connected

nodes are called neighbors. The full information about G is

contained in its binary adjacency matrix ðaijÞi;j2N, with

aij ¼ 1, if the nodes i and j are connected and aij ¼ 0,

otherwise.

These definitions imply that, within the scope of this

article, we only work with undirected, unweighted, simple

graphs (i.e. no directed links, no link weights, and no self-

loops). We do, however, apply node weights wi to enable

the use of area-weighted measures (Sect. 3.3).

The number of connections of any node i is called the

degree ki of node i, with

ki ¼
XN

j¼1

aij: ð1Þ

It is, in other words, the number of neighbors of that par-

ticular node, or the cardinality of its neighborhood

Ni ¼ fj 2N : aij ¼ 1g, the set of nodes, connected to i.

A measure of higher order is the (local) clustering coeffi-

cient ci, which estimates the likelihood of any two
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neighbors of node i also being connected (Watts and

Strogatz 1998):

ci ¼
1

kiðki � 1Þ
X

j;k2Ni

ajk: ð2Þ

Apart from ki and ci, there are many more measures

describing different aspects of network topology, but in this

study we are going to restrict our analyses to the afore-

mentioned ones.

3.2 Network construction

We demonstrate two methods of constructing networks:

data-based climate networks from the model outputs and

reanalysis data, and three types of random-based surrogate

networks which inherit different features from the refer-

ence network in order to function as null models. The latter

shall provide a useful benchmark for the results by imi-

tating climate models which only reproduce certain fea-

tures of the reference network structure.

3.2.1 Climate networks: model output and reanalysis data

The data-based climate networks are constructed from

three sources: CCLM model output, STARS model output,

and ERA-Interim reanalysis data, in each case for the daily

means of four different variables: 2 m temperature (T2M),

total precipitation (PREC), geopotential height at 500 hPa

(GEO500), and sea level pressure (SLP). The temperature

and precipitation variables represent major features of the

climate system with high impact on biosphere and human

society, as well as great importance for impact modeling.

The sea level pressure and geopotential variables are rep-

resentatives of the circulation system on the surface and in

higher altitudes, respectively, and their faithful reproduc-

tion is equally essential for accurate climate modeling.

In all cases the general procedure of network construc-

tion is the same, following (Donges et al. 2009a, b):

1. Choose a time frame, such as austral summer (DJF),

austral winter (JJA), or any other interesting time span

within the evaluation period, to get N time series, one

for each grid cell.

2. For each time series apply a moving average filter with

a sliding window of length l. The default value used

here was l ¼ 7 days.

3. Produce climatological anomalies from each time

series, i.e. remove the seasonality such that the

resulting time series are approximately stationary in

mean and variance.

4. Calculate similarities for all pairs of time series using,

e.g. Pearson correlation or rank correlation, to obtain

an ðN � NÞ-similarity matrix.

5. In the similarity matrix, set those values to 1 which are

greater than a chosen threshold and set those below to

0.

6. Use the thresholded similarity matrix as adjacency

matrix of the climate network. Set the main diagonal to

zero to exclude self-loops.

7. Finally, assign to each node i a node weight wi

proportional to the geographic area it represents, i.e.

wi / cosð/iÞ (Heitzig et al. 2012; Wiedermann et al.

2013).

Steps 2–4 in the construction procedure need some special

attention. To obtain the similarity matrix, we calculate all

correlations at lag zero. Usually, weather phenomena dis-

tribute over a larger area in a matter of several days, so a

time lag might be considered. We instead chose to apply a

moving average to the daily values to account for this fact,

avoiding the application of a fixed time lag. Unless stated

otherwise, we average across of l ¼ 7 days and discuss the

sensitivity of our results with respect to l in Sect. 4.4. Other

similarity measures, such as event synchronization (Malik

ERA-Interim
reanalysis data

statistical
resampling
(STARS)

dynamical
downscaling

(CCLM)

200
bootstrap
networks

200
bootstrap
networks

200 model
output

networks

1 reference
network

1 model
output

network

3 × 200
random

networks

comparison on common grid

daily means
(1979–1995)

6-hourly forcing
(1979–2011)

ensemble
run

single
run

daily means
(1996–2011)

Fig. 3 Experiment design. For each climatological variable consid-

ered, complex networks are generated through different pathways

(modeling, bootstrapping, random network generation) and compared

to the respective reference network, generated directly from the ERA-

Interim data. The red double-headed arrows indicate the application

of the difference measures C� (Eq. 7) and H� (Eq. 8)
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et al. 2011; Boers et al. 2013) also allow for dynamical

time lags but are not subject of this work.

In order to conduct step 3 we need an approximation of

the seasonal cycle in daily resolution, which we construct

by calculating the long-term mean for each day and

smoothing the resulting time series by a Gaussian filter to

account for the rather short evaluation time of 16 years.

For the unbound variables T2M, SLP, and GEO500 we

obtained approximately Gaussian-distributed anomaly time

series by subtracting the seasonal cycle from the smoothed

daily values. Approximate homoscedasticity is assumed for

these variables given that our analysis will be constrained

to seasonal time series. The similarities are estimated by

Pearson correlation.

Other variables, in our case PREC, have a natural lower

bound of zero, and thus their probability distribution is

more complicated, clearly non-Gaussian (frequently mod-

eled as a Weibull-, Gamma-, or mixed-exponential distri-

bution, (Li et al. 2012). In this case, we apply Spearman’s

rank correlation, which also works for non-Gaussian vari-

ables, to estimate the similarities. Also, to compute the

anomaly values and approach homoscedasticity, we divide

the smoothed daily values by the seasonal cycle instead of

subtracting it. This yields an expectation value of 1 mm/

day at all times and leaves zeros at zero. Simply subtracting

the daily means would transform zeros into values which

rise as the climatology falls. To avoid dividing by zero we

define a minimal value of 0.1 mm/day which we divide by

whenever it is underrun. We chose this value since it is

usually referred to as the minimally measurable daily rain

amount. In our data, this case actually occurs only in

northern Chile (Atacama desert) and the adjacent part of

the Pacific ocean.

The threshold for the similarity matrix (step 5) was

applied adaptively such that a desired link density q in the

resulting networks was achieved. Unless stated otherwise,

we used q ¼ 0:01, meaning that we included only the 1 %

strongest correlations in our analysis, which is considered

an effectual trade-off between structural richness and sta-

tistical significance (Donges et al. 2009a).

It should be noted that climate networks are often con-

structed by thresholding the matrix of the absolute values

of correlation coefficients (Tsonis and Roebber 2004;

Donges et al. 2009a, b). In the context of network com-

parison however, this could lead to the problematic situa-

tion, in which, for two networks with adjacency matrices

ðaA
ijÞ and ðaB

ijÞ, aA
ij ¼ 1 is due to a positive correlation while

aB
ij ¼ 1 is due to a negative correlation. Hence, although the

relation of i to j is of wholly different nature in the two

networks, a comparison of them would yield agreement. In

order to prevent this case we focus on positive correlations

here.

Using the above recipe, we construct climate networks

from each of the 200 STARS realizations, as well as one

from the CCLM simulation, and one from the ERA-Interim

data. The latter network is assumed to be a close approx-

imation of the real-world network structure and will thus be

used as the reference network for all others to be compared

to (Fig. 3).

3.2.2 Surrogate networks: bootstraps and random models

The large ensemble of networks from STARS output

allows for assumptions being made on variations in the

quality of the statistical modeling. Due to the considerable

computational demand of the dynamical modeling, we

have only one CCLM simulation available. In order to still

be able to estimate the uncertainty of the dynamical

modeling, a technique from the bootstrapping family of

methods (Efron 1979), also known as case resampling, is

applied: We bootstrap the CCLM output by randomly

drawing entire seasons with replacement, such that the

length of the bootstrapped time series equals the original,

and apply this reordering synchronously to the whole

output time series field to preserve spatial patterns and

correlations. Repeating this procedure 200 times, we get a

set of realizations, each of which we create a climate net-

work from.

The same technique is applied to the reanalysis dataset,

yielding 200 surrogate networks, which are supposed to

closely resemble the reference network and thus form an

upper bound for the performance of the climate models.

To also create lower bounds and thus add a sense of

scale to our comparison, we further extend our comparison

to include three different kinds of random models as sur-

rogates to the reference network. Each type of random

model demonstrates what performance we could expect if

our climate models would only reproduce a specific feature

of the reference network:

• Erd}os–Rényi model (ER)

This most basic type of random network (Erdös and

Rényi 1959) only conserves the total number of links

(or equivalently, the link density q) of the reference

network. Its edges are rewired completely at random.

This can be seen as a worst-case model.

• Configuration model (CM)

Here the degree ki of each node i is the same as in the

reference network, while its neighborhood Ni is

randomized (Newman 2003). While more sophisticated

than the ER approach, this model should still perform

worse than the RCMs.

• Spatially embedded random network model (SERN)

This model was introduced to estimate the effects of

spatial embedding on connectivity in random networks
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(Barnett et al. 2007). It was also recently used to study

the effect of boundaries on measures in regional climate

networks (Rheinwalt et al. 2012). The algorithm

constructs random networks with approximately the

same distribution of geographic link lengths as the

reference network and the same link density.

For each random network type we generated ensembles

of 200 realizations. We now have six sets of networks:

Two from climate models (including 200 bootstraps from

the CCLM simulation), three from random network

models, and one from reanalysis bootstraps, all sharing

the same spatial embedding, link density and node

weights. By assessing their similarity to the reference

network we can estimate the quality of the underlying

modeling processes from the climate network perspective

(Fig. 3).

3.3 Comparison of spatially embedded networks

One way to quantify the dissimilarity of graphs is the

Hamming distance (Hamming 1950). For two unweighted

simple graphs A and B with adjacency matrices ðaA
ijÞ and

ðaB
ijÞ and a common set of N nodes, its normalized form

is the fraction of edges that have to be changed in one

graph in order to convert it into the other (Donges et al.

2009a):

HðA;BÞ ¼ 1

NðN � 1Þ
XN

i;j¼1

aA
ij XOR aB

ij ; ð3Þ

with

aA
ij XOR aB

ij ¼
0 aA

ij ¼ aB
ij ;

1 otherwise:

�
ð4Þ

More generally defined as a distance measure on the set of

binary strings of length L (here L ¼ N2), the Hamming

distance is a metric (Hamming 1950).

To be able to compare spatially embedded networks of

nodes representing differently sized grid cells, we apply the

framework proposed by Heitzig et al. (2012), called node

splitting invariance (n. s. i.). For example, while the degree

ki only counts the number of nodes connected to i, by

summing up the area-proportional weights of the connected

nodes, we can construct a measure which accounts for the

area connected to i:

k�i ¼
X

j2Nþ
i

wj; ð5Þ

with Nþ
i ¼Ni [ fig, the extended neighborhood of i.

Likewise, there is an n. s. i. version of the clustering

coefficient:

c�i ¼
1

ðk�i Þ
2

X

j;k2Nþ
i

wja
þ
jkwk: ð6Þ

Here we have to sum over aþjk , the entries of the extended

adjacency matrix with aþi6¼j ¼ aij; aþii ¼ 1. For details on

why to use Nþ and ðaþij Þ to abide the concept of node-

splitting invariance, please refer to Heitzig et al. (2012).

The n. s. i. clustering coefficient takes into account the

area, represented by each neighbor of node i, and weights

their contribution to the clustering coefficient accordingly.

To estimate how well the clustering fields of two given

networks A and B match (in our case reference and model

network), we determine their differences via the node-

weighted root-mean-square error (RMSE) of clustering

coefficients

C�ðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W

XN

i¼1
wi cA�

i � cB�
ið Þ2

r
; ð7Þ

where W ¼
PN

i¼1 wi is the total node weight. This measure

is just one example of how to compare the nonlinear

properties of two networks. Analogously, one could com-

pare other measures of higher order, such as betweenness

or closeness. As a linear measure of mutual differences in

the neighborhood structure, we introduce the node-weigh-

ted Hamming distance

H�ðA;BÞ ¼ 1

W2

XN

i;j¼1

wi aA
ij XOR aB

ij

� �
wj: ð8Þ

With C� and H� we now have two difference measures for

spatially embedded networks, which account for differently

weighted nodes, as in the case of nodes representing geo-

graphic areas of varying size.

3.4 Conventional area-weighted difference measures

To complete our methodology and relate to previous works

of climate model evaluation, we apply area-weighted ver-

sions of two standard difference measures, the root-mean-

square error E of the climatological mean field l of a

variable and the logarithmic root-mean-square factor F

(Golding 1998) of the respective standard deviation field r.

We define the area-weighted versions of E and F as

E�ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W

XN

i¼1

wi lA
i � lB

ið Þ2
vuut ð9Þ

and

F�ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

W

XN

i¼1

wi log
rA

i

rB
i

� �2

vuut ; ð10Þ
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where A and B denote two distinct datasets to be compared.

Altogether, the measures C�, H�, E� and F� are com-

parable in that they are equal to zero in case of perfect

agreement and grow with disagreement. Yet they are

complementary in that they are based on distinct features of

the underlying time series, namely the mean and variance

fields in case of E� and F�, and the correlation matrix in

case of C� and H�.

4 Application: regional climate modeling over South

America

The climate of South America (SA) is very diverse and

includes the humid Amazon rain forest in the central-

northern lowlands, which is contrasted by semi-arid regions

like the Sertão in northeastern Brazil, deserts like La

Guajira in northern Columbia or the Atacama in northern

Chile, and permanent ice fields in the south of Patagonia.

The Amazon rain forest is also a hotspot of biodiversity and

a major carbon sink, whose role as one of the key tipping

elements in the global climate system has been well

established (Lenton et al. 2008; Boulton et al. 2013).

During austral summer (DJF), the South American

Monsoon System is responsible for extensive moisture

transport from the southward-shifted Intertropical Con-

vergence Zone (ITCZ) via the Amazon basin and further

south towards the extratropics (Vera et al. 2006). The

channeling of the easterly trade winds by the Andes and the

Brazilian Highlands, also called the South American Low-

Level Jet (SALLJ, Marengo and Soares 2004), leads to

high precipitation from the Altiplano Plateau to the La

Plata basin or, via the South Atlantic Convergence Zone, in

southeast SA and the adjacent South Atlantic (Carvalho

et al. 2004).

In austral winter (JJA), the ITCZ is shifted northwards.

The moisture transport via SALLJ is considerably lower

and more moisture from the Atlantic is fed into the then

active North American Monsoon System. A major influ-

ence on the weather in the southern part of SA is the for-

mation and movement of extratropical cyclones, which

during winter tend to be more frequent and of higher

complexity (Mendes et al. 2009).

Another prominent influence on the South American

climate is the El Niño phenomenon (Trenberth 1997), the

appearance of a band of unusually warm ocean water in the

East Pacific, off the coast of Peru. El Niño or, in a wider

context, the El Niño Southern Oscillation (ENSO), occurs

highly erratically on an interannual scale and, depending on

its intensity, can impose drastic effects on the SA climate

and the ecosystem in general, e.g. by disturbing oceanic

food chains, which are sensitive to alterations in the water

temperature (Stenseth et al. 2002). Reliable mechanisms for

the predictability of ENSO are still highly sought-after in

contemporary climate and ocean research (Schneider et al.

2003; Ludescher et al. 2013), and assessing the impacts of

climate change on ENSO remains challenging, especially in

the long run (Stevenson et al. 2012).

There have been multiple attempts on modeling the

regional climate of SA, recently in a coordinated study

following the CORDEX conventions (Solman et al. 2013)

or with stronger focus on climate change impacts on

Amazonia (Cook et al. 2012). Previous works include

studies of the long term effects of climate change (Marengo

et al. 2009, 2011) and coupled RCM-vegetation modeling

(Cook and Vizy 2008). While the agreement of the applied

models is often quite high, all of the above studies focus on

reproducing seasonal cycles or mean conditions over

extended periods, along with variance analyses and

observations on the frequency distributions of extremes.

Fig. 4 Estimated probability density functions of the node-weighted

Hamming distances between the model networks and the reference

network. Time series from T2M in austral summer (DJF). The

networks made from resampled reanalysis data (black) bear the

closest resemblance to the reference network. STARS (blue) performs

better than CCLM (red dashed line). The networks from CCLM

bootstraps (red shaded area) give an impression of the uncertainty of

the CCLM modeling, sometimes giving better and sometimes worse

results than the actual run. The random models (SERN: yellow,

configuration model: green, Erd}os–Rényi: pink) perform worse than

the RCMs
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Being based on comparing the network structure, and,

hence, spatial correlation patterns of model output and

reanalysis data, our methodology is complementary to this

established agenda.

4.1 Linear network comparison: H�

The first step in our analysis concerns the reproduction of

the adjacency structure of the reference network by the

RCMs and the random models. As an introduction we

discuss the probability density functions (PDFs) of the

node-weighted Hamming distance H� (Eq. 8; Fig. 4),

derived from networks of T2M time series in austral

summer.

As expected, the bootstrapped ERA-Interim data yields

networks with the closest resemblance to the reference

network and thus the smallest Hamming distance while the

random models produce networks with less resemblance,

SERN performing best, followed by the configuration

model, and Erd}os–Rényi being worst. The latter is no

surprise due to the complete randomness of the ER model,

the expectation value for the unweighted Hamming dis-

tance being 2qð1� qÞ ¼ 0:0198 (Donges et al. 2009a).

The slightly better performance of the configuration model

is rooted in the model’s conservation of the degree

distribution, giving each node the same degree as the

corresponding node in the reference network, thus

enhancing the probability of successfully reproducing

links. SERN performs much better because it conserves an

important link property that is shared by all networks

considered here: The probability of finding a link between

two nodes is the greater the closer they are to each other

geographically. In comparison to ER and CM, this strongly

reduces the randomness of link positioning and renders the

SERN networks much more similar to the reference net-

work. All random network models produce very narrow

distributions due to the rather low link density of 1 % and

the high number of 7,000 nodes (law of large numbers).

For a better visualization, the cusps of these distributions

are cut off in Fig. 4.

Additionally, we find that of the RCMs, STARS out-

performs CCLM. There are remarkable differences in the

shape of the distributions, those from bootstraps (ERA and

CCLM) being wider than the distribution of the STARS

ensemble. This can possibly be attributed to the fact that,

due to the operating mode of STARS (cf. Sect. 2.1 or

Orlowsky et al. 2008), many constraints are imposed on the

selection of blocks of consecutive days during the resam-

pling of temperature time series, thus lowering the vari-

ability between realizations and resulting in a narrower

Fig. 5 Node-weighted Hamming distances of networks on modeled

and bootstrapped data to the respective ERA-Interim reference

network. All variables in austral summer (DJF, left) and winter

(JJA, right). The linear network structure is better reproduced by

STARS (blue) than CCLM (bootstraps: red, single run: red dashed

line) in both seasons and all variables except GEO500, where CCLM

prevails. ERA-bootstraps (black) are always superior to both RCMs.

The random network models perform worse and are omitted here
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distribution compared to the unbiased bootstrapping pro-

cedures applied to ERA and CCLM.

For the other variables (Fig. 5), there is no such clear

difference in variability, presumably because these are only

indirectly affected by the resampling procedure, via their

climatological interrelation to temperature. We have left

out the Hamming distance distributions of the random

networks here, because their position hardly differs

between variables.

Comparing the overall picture, we observe that Ham-

ming distances are greatest for PREC and least for

GEO500 across datasets and seasons. This indicates that,

out of those variables considered in this study, the

dynamics of precipitation are hardest and those of the

500 hPa geopotential are easiest to model. The special

position of GEO500 comes as no surprise as it is the only

upper level variable, i.e. undisturbed by orographic or other

ground-based influences, and since its dynamics have been

found relatively easy to model before (Steinhaeuser and

Tsonis 2013). Also the outstanding complexity of precipi-

tation dynamics is well-known (Huff and Shipp 1969;

Matsoukas et al. 2000; Peters et al. 2001).

Comparing the individual distributions, we find that the

resampling-based model STARS has a rather constant relative

distance to the ERA bootstraps (the practical upper bound to

model accuracy), which simply reflects the model’s functional

principle. In contrast, the performance of the dynamical

model CCLM varies strongly between variables. Compared to

STARS, it generates T2M, PREC, and SLP networks which

are less similar and a GEO500 network which is more similar

to the respective reanalysis reference. This reflects that model

physics differences have a larger impact at the surface than at

upper levels where in turn dynamical simulations bear greater

similarity to their boundary forcings.

Performance differences between seasons are smaller than

those between models. In austral winter (JJA, Fig. 5, right),

the modeling of GEO500 by CCLM is slightly less accurate

than in summer (still only 8 % of the STARS realizations

perform better than the CCLM run). This might be attributed

to a higher complexity of the extratropical cyclogenesis

during winter (Mendes et al. 2009) and its relatively greater

influence on the South American climate due to the JJA

northward displacement of general circulation patterns.

4.2 Nonlinear network comparison: C�

The comparison of the higher-order structure of the net-

works, here represented by C� (Eq. 7; Fig. 6), confirms in

Fig. 6 Node-weighted clustering RMSE of networks on modeled and

bootstrapped data with respect to the reference network. All variables

in austral summer (DJF, left) and winter (JJA, right), coloring as in

Fig. 5. For the higher-order comparison, the seasonal differences are

more pronounced and CCLM performs comparably to STARS in

austral summer (except SLP), while STARS performs better in austral

winter for all variables. ERA-bootstraps are always superior to both

RCMs. The random network models perform worse and are omitted

here
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parts the results of the linear comparison: The ERA boot-

straps score best, followed by the RCMs and the random

models. The latter are omitted in the figures, their ranking

being the same as for the linear comparison, with the

random networks’ distributions lying even farther out than

in Fig. 4. Apparently, reproducing the clustering structure

is more challenging for a random model than reproducing

the adjacency structure.

Another qualitative similarity is the extensive

dominance of the statistical model, most notably in

austral winter, where all of the STARS simulations are

closer to the reference than the CCLM run. For the

summer months, this dominance is equally pronounced

only for SLP, but less pronounced otherwise. In case

of T2M, PREC, and GEO500, 80, 49 and 90 % of the

STARS ensemble perform better than CCLM,

respectively.

Moreover, the clustering RMSE of the CCLM single run

is often separated from the bootstrap distribution, the latter

scoring worse, most prominently for T2M and PREC.

Although visible in the linear difference measure H� as

well (Fig. 5), this feature is more pronounced in the non-

linear case (Fig. 6), which implies that the higher-order

network structure is more easily disturbed by the boot-

strapping procedure than the adjacency structure, as mea-

sured by the Hamming distance.

(A) (B)

(E) (F)

(I) (J)

(M) (N)

(C) (D)

(G) (H)

(K) (L)

(O) (P)

Fig. 7 Mean and variance-based error measures E� and F� versus the

covariance-based Hamming distance H� for different variables and

seasons as mentioned in the figures. Coloring as in Fig. 5, the CCLM

single run is depicted by an accentuated red dot. For T2M and PREC

(panels A–H), STARS performs better with respect to all measures.

GEO500 (panels I–L) is dominated by CCLM, and the results are

mixed for SLP (panels M–P)
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4.3 Conventional measures: E� and F�

We now investigate the relation of H� to the conventional

measures E� and F� (Eqs. 9, 10; Fig. 7). The measures

agree on STARS being better than CCLM at modeling

T2M and PREC. In case of GEO500, CCLM performs

better according to all three measures except for E� in DJF

(panel I). For SLP, there is no unanimous result: H� and

E� favor STARS, F� favors CCLM. Comparing seasons,

STARS is generally better in winter than in summer,

especially as measured by F� and H�. CCLM shows

ambiguous interseasonal differences for all three

measures.

The complementarity of network-based and conven-

tional difference measures is reflected by the models’

ability to simulate SLP and GEO500 in DJF. One of the

models may perform better according to both scores

(STARS in panel M, CCLM in panel J) or prevail

according to H� but not according to E� or F�, respectively

(CCLM in panel I, STARS in panel N).

Finally, we observe a consistent difference in the rank-

ings according to the mean- and the variance-based mea-

sure. While E� favors STARS in all cases but one (panel

K), the result for F� is less clear with CCLM even out-

performing STARS in both pressure variables. These

findings are in line with the statistical model’s presumably

too low variability of H� values for T2M as discussed in

Sect. 4.1.

4.4 Sensitivity to network construction parameters

We have presented extensive results for only one set of

network construction parameters as stated in Sect. 3.2.1,

namely l ¼ 7 days for the length of the sliding window and

q ¼ 1 % for the link density of all networks involved.

However, calculations were carried out for a wider range of

these parameters. We found that varying l 2 ½3; 11� and

q 2 ½0:5 %; 2 %� did not alter the results qualitatively,

which confirms the robustness of the demonstrated

methodology.

5 Conclusions

In this study we have introduced a novel approach to cli-

mate model evaluation based on complex networks. To this

end, we have defined two node-weighted difference mea-

sures H� and C�, which compare adjacency matrices and

clustering coefficient fields, respectively. We applied our

methodology to evaluate the performance of a statistical vs.

a dynamical RCM in simulating the climate of South

America.

We have evaluated daily means of 2 m temperature,

precipitation, sea level pressure, and geopotential height at

500 hPa, comparing the respective model outputs to our

ground truth, the forcing ERA-Interim data. For each var-

iable, climate networks have been constructed based on

cross-correlations of the time series, compared using H�

and C�, and the findings have been related to the classic

mean- and variance-based difference measures E� and F�.
For the linear network comparison (H�), we have found

that the statistical model STARS is better at reproducing

the network structure of the temperature, precipitation, and

pressure time series, while the dynamical model CCLM

performed better for the geopotential. In the higher-order

comparison (C�), STARS is superior for all variables in

austral winter (JJA), while CCLM scores almost compa-

rably in DJF, except for sea level pressure.

While in most cases the conventional difference mea-

sures have been in agreement with H�, there were also

cases in which the network structure was better reproduced

by a model which was less favored by a conventional

measure or vice versa, most notably in the pressure and

geopotential variables. Although the construction of cli-

mate networks, representing statistical associations within

climatological fields, takes more effort than applying rather

simple measures like E� and F�, these complementary

findings demonstrate the novelty and justification for our

approach.

The finding of STARS being superior to CCLM for

surface variables, not only according to traditional but also

to the new network-based difference measures, demon-

strates the physical consistency of the statistical model.

However, it should be noted that the outcome of this study

does not imply a general superiority of statistical to

dynamical climate modeling. If, for instance, the reference

networks had not been constructed from the driving ERA-

Interim reanalysis but from independent observational data,

the model ranking might have been different. A study on

this matter is underway.

This work was meant to highlight the potential of the

methodology. To demonstrate the robustness of our results

concerning the comparison of RCM performances, an

inclusion of further statistical and dynamical RCMs as well

as applications to other regions are required. Such a study

could be carried out e.g. in the CORDEX framework. Also

the focus on ensemble runs with varying model parameters

could be interesting, possibly revealing the influence of

specific model components on the network structure of the

output and in turn allowing for model improvements.

Further development of the methodology will include

the application of additional difference measures, e.g. other

metrics on adjacency matrices and the comparison of other

network measures like betweenness or closeness to reveal

more features of the higher-order network structure
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differences. Finally, local versions of network difference

measures shall be developed in order to add spatial detail to

the comparison.
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River basins. Clim Dyn 38(9–10):1829–1848. doi:10.1007/

s00382-011-1155-5

Matsoukas C, Islam S, Rodriguez-Iturbe I (2000) Detrended fluctu-

ation analysis of rainfall and streamflow time series. J Geophys

Res 105(D23):29165–29172. doi:10.1029/2000JD900419

Mendes D, Souza EP, Ja Marengo, Mendes MCD (2009) Climatology

of extratropical cyclones over the South American-southern

oceans sector. Theor Appl Climatol 100(3–4):239–250. doi:10.

1007/s00704-009-0161-6

Newman M (2009) Networks: an introduction. Oxford University

Press, Oxford

Newman MEJ (2003) The structure and function of complex

networks. SIAM Rev 45(2):167–256. doi:10.1137/S003614450

342480

Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R,
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