4 research outputs found

    Elucidation of DNA methylation changes in response to ionizing radiation induced double strand breaks

    Get PDF
    Recent studies indicate that epigenetic modifications like DNA methylation are involved in the DNA damage response to ionizing radiation (IR). In this doctoral thesis DNA methylation changes after treatment with IR within one replication cycle time frame (≤ 24 hours) were investigated and a decrease in DNA methylation at short times after IR was observed. This fast decrease cannot be explained by a passive, replicationdependent mechanism due to reduced DNMT (DNA methyltransferase) expression. Rather it is conceivable that changing the enzymatic activity of enzymes may lead to changes in DNA methylation as a response to IR. In this context especially TET (ten eleven translocation) enzymes might play a role. These oxidize Methylcytosine (5mC) to Hydroxymethylcytosine (5hmC) and further to formylcytosine (5fC) and carboxylcytosine (5caC), being eventually replaced by cytosine via base excision repair (BER) mechanism. For the analysis of a TET-dependent DNA demethylation an appropriate experimental cellular system was established. Therefore, global 5mC levels, TET2 expression levels and 5hmC levels in different cell lines were investigated. An anti-correlation between 5mC levels and TET2 expression was shown for all cell lines, while 5hmC and 5mC levels were correlated only in a part of the investigated cell lines and no correlation between 5hmC and TET2 expression was observed. NIH/3T3 cells, showing no TET2 expression, were chosen for experiments in which the catalytic domain of TET2 (TET2CD-GFP) was overexpressed. Using two different techniques (immunofluorescence and ELISA-based colorimetric analysis), an increase in 5hmC abundance was demonstrated as a response to TET2CD-GFP overexpression, indicating that ectopically expressed TET2 is active. Similar results were obtained when TET2CD-GFP was overexpressed in U-2 OS cells, which have a high expression level of TET2. TET2CD-GFP overexpression also led to its accumulation in nucleoli. Whether this observation would be an effect of overexpression or be indicative of a possible function in these nuclear subcompartments is yet to be elucidated. Additionally, by using flow cytometry analysis, exposure to IR and concomitant overexpression of TET2CD-GFP strongly induced 5hmC formation, therefore suggesting a function of TET2 in response to irradiation. Recruitment analysis showed that the TET2 catalytic domain was recruited to UV laserinduced but not X-rays- or heavy ion-induced damage sites. Endogenous TET2, which was analyzed in high TET2 expressing human fibroblasts, was recruited to damage sites after irradiation with heavy ions or X-rays. As 5hmC is the direct product of the catalytic activity of TET enzymes, local 5hmC formation and abundance at damage sites was investigated. It was observed that 5hmC accumulated at heavy ion- as well as X-ray-induced DNA double strand breaks (DSBs). In addition, investigating 5hmC foci over time after irradiation with X-rays revealed that 5hmC formation and kinetics is similar to that of γH2AX foci, whereby every 5hmC focus co-localized with γH2AX. However, this did not hold true for all γH2AX foci, whose total number was always higher than that of 5hmC. Furthermore, 5hmC (and γH2AX) foci formation was almost unaffected by the inhibition of DNA-PKcs’ enzymatic activity. Conversely, 5hmC and γH2AX foci persistence was significantly delayed after DNA-PKcs inhibition. Results obtained in this thesis show that DNA methylation changes (5hmC formation) take place within the time frame of one replication cycle after exposure to IR and that these changes can be observed at sites of DSBs. 5hmC at DSBs might be formed by the oxidative function of TET2, which was shown to be recruited to DSBs. However, involvement of the other TET enzymes in 5hmC production cannot be excluded. Therefore, these results suggest a role of 5hmC in the response to IR induced DSBs, whereby the here presented data suggest that the fast, radiation induced demethylation of cytosine most likely is mainly catalyzed by TET2 besides other enzymes

    Nanolesions induced by heavy ions in human tissues: experimental and theoretical studies

    Get PDF
    The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively

    DNA end resection is needed for the repair of complex lesions in G1-phase human cells

    No full text
    <div><p>ABSTRACT</p><p>Repair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase. In contrast, DNA resection in G1-phase may lead to an error-prone microhomology-mediated end joining. We induced DNA lesions with a wide range of complexity by irradiation of mammalian cells with X-rays or accelerated ions of different velocity and mass. We found replication protein A (RPA) foci indicating DSB resection both in S/G2- and G1-cells, and the fraction of resection-positive cells correlates with the severity of lesion complexity throughout the cell cycle. Besides RPA, Ataxia telangiectasia and Rad3-related (ATR) was recruited to complex DSBs both in S/G2- and G1-cells. Resection of complex DSBs is driven by meiotic recombination 11 homolog A (MRE11), CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) but seems not controlled by the Ku heterodimer or by phosphorylation of H2AX. Reduced resection capacity by CtIP depletion increased cell killing and the fraction of unrepaired DSBs after exposure to densely ionizing heavy ions, but not to X-rays. We conclude that in mammalian cells resection is essential for repair of complex DSBs in all phases of the cell-cycle and targeting this process sensitizes mammalian cells to cytotoxic agents inducing clustered breaks, such as in heavy-ion cancer therapy.</p></div
    corecore