12 research outputs found

    WIDE-RANGE COMPRESSION FORCES TO INVESTIGATE SINGLE-CELL IN-FLOW MOTIONS, MECHANOBIOLOGICAL RESPONSES AND INTRACELLULAR DELIVERY

    Get PDF
    The aim of the PhD work is to create a new microfluidic approach to finely tune applied in-flow forces in order to explore controlled single-cell deformation. In fact, we propose a microfluidic device based on compression forces arising from a viscoelastic fluid solution that firstly align cells and then deform them. By simply changing the rheological properties and the imposed fluid-flow conditions, our approach represents an easy-to-use and versatile tool to collect a comprehensive mapping of single-cell properties, investigating both biophysical and biomechanical characteristics. In a wide-range of applied compression, we observe how different degrees of deformation lead to cell-specific deformation-dependent in-flow dynamics, which correlate the classical deformation parameters (e.g. cell aspect-ratio), with dynamic quantities (e.g. revolution time of rotation during in-flow motion). Thus, a precise in-flow label-free cell phenotyping is achieved allowing the distinction of different cell classes. The observation of different degrees of deformation corresponding to variable compression, lead us to interrogate the inner cell structures possibly involved into the mechanical responses. We demonstrate that re-organization phenomena of actin cortex and microtubules as well as of nuclear envelope and chromatin content, occur. Also in this case, cell-specific responses are collected, allowing us to distinguish healthy from pathological cells depending on the structural mechanical reaction. Furthermore, by playing with the high levels of compression, we show preliminary results about the possibility to induce a nanoparticle intracellular delivery process by escaping physiological endocytosis. In fact, cells result to be able to incorporate nanoparticles into the cytoplasm, without involving a vesicle formation for the entry. These outcome open up new interesting scenarios about the possibility to use the microfluidic device as a platform for cell phenotyping and intracellular delivery, properly engineered for both diagnostic and therapeutic purposes

    Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions

    Get PDF
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments

    Advanced label-free cellular identification in flow by collaborative coherent imaging techniques

    No full text
    We investigated subclasses of living peripheral blood cells in a microfluidic-based system, with the aim to characterize their morphometric and optical properties, and to track their position in flow in a label-free modality. We employed two coherent imaging techniques: a scattering approach of precisely aligned single cells, and a digital holography approach to achieve optical cell reconstructions in flow. Cells were first 3D-aligned in round shaped capillary and subsequently measured in a following square shaped channel. Results were obtained at two fixed measurement positions, the first one was chosen close to the entrance of the measurement channel to ensure 3D cell alignment for scattering investigations; the second was placed 15 mm after to study additional cell properties by digital holography and to investigate possible variations of axial cell positions. First, the refractive index, ratio of the nucleus over cytoplasm, and cell dimension were investigated from scattering investigations. Further quantitative phase-contrast reconstructions by digital holography were employed to calculate surface area, dry mass, biovolume and positions of cells using the scattering outcomes as input parameters. The precise cell alignment at the first measurement position could be confirmed. At the second measurement position a full label-free characterization of cell classes in distinct vertical positions was realized and supported by applied microfluidic force calculations, which can be used to align, deform and/or separate cells. Our results confirm the possibility to differentiate cell classes in flow, thus avoiding chemical cell staining or labeling, which are nowadays used

    Video_3_Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions.AVI

    No full text
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.</p

    Video_2_Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions.AVI

    No full text
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.</p

    Data_Sheet_1_Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions.pdf

    No full text
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.</p

    Video_6_Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions.AVI

    No full text
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.</p

    Video_4_Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions.AVI

    No full text
    Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen–thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.</p
    corecore