53 research outputs found

    Measuring the quality of life of visually impaired children: First stage psychometric evaluation of the Novel VQoL_CYP Instrument

    Get PDF
    Purpose: To report piloting and initial validation of the VQoL_CYP, a novel age-appropriate vision-related quality of life (VQoL) instrument for self-reporting by children with visual impairment (VI). Methods: Participants were a random patient sample of children with VI aged 10–15 years. 69 patients, drawn from patient databases at Great Ormond Street Hospital and Moorfields Eye Hospital, United Kingdom, participated in piloting of the draft 47-item VQoL instrument, which enabled preliminary item reduction. Subsequent administration of the instrument, alongside functional vision (FV) and generic health-related quality of life (HRQoL) self-report measures, to 101 children with VI comprising a nationally representative sample enabled further item reduction and evaluation of psychometric properties using Rasch analysis. Construct validity was assessed through Pearson correlation coefficients. Results: Item reduction through piloting (8 items removed for skewness and individual item response pattern) and validation (1 item removed for skewness and 3 for misfit in Rasch) produced a 35-item scale, with fit values within acceptable limits, no notable differential item functioning, good measurement precision, ordered response categories and acceptable targeting in Rasch. The VQoL_CYP showed good construct validity, correlating strongly with HRQoL scores, moderately with FV scores but not with acuity. Conclusions: Robust child-appropriate self-report VQoL measures for children with VI are necessary for understanding the broader impacts of living with a visual disability, distinguishing these from limited functioning per se. Future planned use in larger patient samples will allow further psychometric development of the VQoL_CYP as an adjunct to objective outcomes assessment

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe

    Normativa dell'esercizio delle professioni sanitarie

    No full text

    I traumi cranici

    No full text

    An approach to person identification by means of dental prostheses in a burnt corpse

    No full text
    The identification of a burnt corpse is described. In this case it is suggested that the composition and properties of alloys used for dental prostheses are useful in determining the country of origin of the deceased in addition to the role they could play in an ordinary dental identification process

    A new experimental approach to computer-aided face/skull identification in forensic anthropology

    No full text
    The present study introduces a new approach to computer-assisted face/skull matching used for personal identification purposes in forensic anthropology.In this experiment, the authors formulated an algorithm able to identify the face of a person suspected to have disappeared, by comparing the respective person's facial image with the skull radiograph.A total of 14 subjects were selected for the study, from which a facial photograph and skull radiograph were taken and ultimately compiled into a database, saved to the hard drive of a computer. The photographs of the faces and corresponding skull radiographs were then drafted using common photographic software, taking caution not to alter the informational content of the images. Once computer generated, the facial images and menu were displayed on a color monitor.In the first phase, a few anatomic points of each photograph were selected and marked with a cross to facilitate and more accurately match the face with its corresponding skull. In the second phase, the abovementioned cross grid was superimposed on the radiographic image of the skull and brought to scale. In the third phase, the crosses were transferred to the cranial points of the radiograph. In the fourth phase, the algorithm calculated the distance of each transferred cross and the corresponding average. The smaller the mean value, the greater the index of similarity between the face and skull.A total of 196 cross-comparisons were conducted, with positive identification resulting in each case. Hence, the algorithm matched a facial photograph to the correct skull in 100% of the cases
    • …
    corecore