13 research outputs found

    Treatment of Graft-versus-Host Disease with Naturally Occurring T Regulatory Cells

    Get PDF
    A significant body of evidence suggests that treatment with naturally occurring CD4(+)CD25(+) T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of death after bone marrow transplantation. Tregs constitute a population responsible for dominant tolerance to self-tissues in the immune system. These cells prevent autoimmune and allergic reactions and decrease the risk of rejection of allotransplants. For these reasons, Tregs are considered as a cellular drug in GvHD. The results of the first clinical trials with these cells are already available. In this review we present important experimental facts which led to the clinical use of Tregs. We then critically evaluate specific requirements for Treg therapy in GvHD and therapies with Tregs currently under clinical investigation, including our experience and future perspectives on this kind of cellular treatment

    Beyond FOXP3:a 20-year journey unravelling human regulatory T-cell heterogeneity

    Get PDF
    The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches

    A new class of exact solutions of the Schrodinger equation

    Get PDF
    The aim of this paper is to find the exact solutions of the Schrodinger equation. As is known, the Schrodinger equation can be reduced to the continuum equation. In this paper, using the non-linear Legendre transform the equation of continuity is linearized. Particular solutions of such a linear equation are found in the paper and an inverse Legendre transform is considered for them with subsequent construction of solutions of the Schrodinger equation. Examples of the classical and quantum systems are considered.Comment: 26 pages, 34 figure

    Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization.

    Get PDF
    Cellular therapies with CD4+ T regulatory cells (Tregs) hold promise of efficacious treatment for the variety of autoimmune and allergic diseases as well as posttransplant complications. Nevertheless, current manufacturing of Tregs as a cellular medicinal product varies between different laboratories, which in turn hampers precise comparisons of the results between the studies performed. While the number of clinical trials testing Tregs is already substantial, it seems to be crucial to provide some standardized characteristics of Treg products in order to minimize the problem. We have previously developed reporting guidelines called minimum information about tolerogenic antigen-presenting cells, which allows the comparison between different preparations of tolerance-inducing antigen-presenting cells. Having this experience, here we describe another minimum information about Tregs (MITREG). It is important to note that MITREG does not dictate how investigators should generate or characterize Tregs, but it does require investigators to report their Treg data in a consistent and transparent manner. We hope this will, therefore, be a useful tool facilitating standardized reporting on the manufacturing of Tregs, either for research purposes or for clinical application. This way MITREG might also be an important step toward more standardized and reproducible testing of the Tregs preparations in clinical applications

    High maternal-fetal HLA eplet compatibility is associated with severe manifestation of preeclampsia

    Get PDF
    IntroductionPreeclampsia is responsible for more than 70 000 and 500 000 maternal and fetal deaths, respectively each year. Incomplete remodelling of the spiral arteries in placenta is the most accepted theory of preeclampsia pathogenesis. However, the process is complexed with immunological background, as pregnancy resembles allograft transplantation. Fetus expresses human leukocyte antigens (HLA) inherited from both parents, thus is semiallogeneic to the maternal immune system. Therefore, induction of fetal tolerance is crucial for physiological outcome of pregnancy. Noteworthy, the immunogenicity of discordant HLA antigens is determined by functional epitopes called eplets, which are continuous and discontinuous short sequences of amino acids. This way various HLA molecules may express the same eplet and some HLA incompatibilities can be more immunogenic due to different eplet combination. Therefore, we hypothesized that maternal- fetal HLA incompatibility may be involved in the pathogenesis of gestational hypertension and its progression to preeclampsia. We also aimed to test if particular maternal-fetal eplet mismatches are more prone for induction of anti- fetal HLA antibodies in gestational hypertension and preeclampsia.MethodsHigh resolution next-generation sequencing of HLA-A, -B, -C, -DQB1 and -DRB1 antigens was performed in mothers and children from physiological pregnancies (12 pairs) and from pregnancies complicated with gestational hypertension (22 pairs) and preeclampsia (27 pairs). In the next step HLA eplet identification and analysis of HLA eplet incompatibilities was performed with in silico approach HLAMatchmaker algorithm. Simultaneously maternal sera were screened for anti-fetal HLA class I, class II and anti-MICA antibodies with Luminex, and data were analyzed with HLA-Fusion software.ResultsWe observed that high HLA-C, -B, and DQB1 maternal-fetal eplet compatibility was associated with severe preeclampsia (PE) manifestation. Both quantity and quality of HLA epletmismatches affected the severity of PE. Mismatches in HLA-B eplets: 65QIA+76ESN, 70IAO, 180E, HLA-C eplets: 193PL3, 267QE, and HLA-DRB1 eplet: 16Y were associated with a mild outcome of preeclampsia if the complication occurred.ConclusionsHigh HLA-C, HLA-DQB1 and HLA-B eplet compatibility between mother and child is associated with severe manifestation of preeclampsia. Both quantity and quality of maternal-fetal HLA eplet mismatches affects severity of preeclampsia

    Data_Sheet_1.pdf

    No full text
    <p>Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.</p

    Hurdles in therapy with regulatory T cells

    No full text
    Improper activation of the immune system contributes to a variety of clinical conditions, including autoimmune and allergic diseases as well as solid organ and bone marrow transplantation. One approach to counteract this activation is through adoptive therapy with regulatory T cells (Tregs). Efforts to manufacture these cells have led to good maunfacturing practice-compliant protocols, and Treg products are entering early clinical trials. Here, we report the stance of the European Union Cooperation in Science and Technology Action BM1305, "Action to Focus and Accelerate Cell-based Tolerance-inducing Therapies-A FACTT," which identifies hurdles hindering Treg clinical applications in Europe and provides possible solution
    corecore