6,642 research outputs found

    Modern CFD applications for the design of a reacting shear layer facility

    Get PDF
    The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data

    Partition function zeros at first-order phase transitions: Pirogov-Sinai theory

    Full text link
    This paper is a continuation of our previous analysis [BBCKK] of partition functions zeros in models with first-order phase transitions and periodic boundary conditions. Here it is shown that the assumptions under which the results of [BBCKK] were established are satisfied by a large class of lattice models. These models are characterized by two basic properties: The existence of only a finite number of ground states and the availability of an appropriate contour representation. This setting includes, for instance, the Ising, Potts and Blume-Capel models at low temperatures. The combined results of [BBCKK] and the present paper provide complete control of the zeros of the partition function with periodic boundary conditions for all models in the above class.Comment: 46 pages, 2 figs; continuation of math-ph/0304007 and math-ph/0004003, to appear in J. Statist. Phys. (special issue dedicated to Elliott Lieb

    Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    Full text link
    We present the first self-consistent, three-dimensional (3D) core-collapse supernova simulations performed with the Prometheus-Vertex code for a rotating progenitor star. Besides using the angular momentum of the 15 solar-mass model as obtained in the stellar evolution calculation with an angular frequency of about 0.001 rad/s (spin period of more than 6000 s) at the Si/Si-O interface, we also computed 2D and 3D cases with no rotation and with a ~300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast rotating model develops an explosion in 3D when the Si/Si-O interface collapses through the shock. The explosion becomes possible by the support of a powerful SASI spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a "two-dimensionalization" of the turbulent energy spectrum (yielding roughly a -3 instead of a -5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the "universal critical luminosity condition" of Summa et al. (2016) to account for the effects of rotation, and demonstrate its viability for a set of more than 40 core-collapse simulations including 9 and 20 solar-mass progenitors as well as black-hole forming cases of 40 and 75 solar-mass stars to be discussed in forthcoming papers.Comment: 24 pages, 19 figures; refereed version with additional section on resolution dependence; accepted by Ap

    Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    Full text link
    An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nucleon-nucleon correlations in the neutrino opacities. After a brief phase of accretion-enhanced luminosities (~200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of electron antineutrinos and muon/tau antineutrinos very similar. We discuss consequences for the neutrino-driven wind as a nucleosynthesis site and for flavor oscillations of SN neutrinos.Comment: 4 pages, 4 eps figures; published as Physical Review Letters, vol. 104, Issue 25, id. 25110

    NA49/NA61: results and plans on beam energy and system size scan at the CERN SPS

    Full text link
    This paper presents results and plans of the NA49 and NA61/SHINE experiments at the CERN Super Proton Synchrotron concerning the study of relativistic nucleus-nucleus interactions. First, the NA49 evidence for the energy threshold of creating quark-gluon plasma, the onset of deconfinement, in central lead-lead collisions around 30A GeV is reviewed. Then the status of the NA61/SHINE systematic study of properties of the onset of deconfinement is presented. Second, the search for the critical point of strongly interacting matter undertaken by both experiments is discussed. NA49 measured large fluctuations at the top SPS energy, 158A GeV, in collisions of light and medium size nuclei. They seem to indicate that the critical point exists and is located close to baryonic chemical potential of about 250 MeV. The NA61/SHINE beam energy and system size scan started in 2009 will provide evidence for the existence of the critical point or refute the interpretation of the NA49 fluctuation data in terms of the critical point.Comment: 11 pages, invited talk at Quark Matter 201

    Extra Dimensions and Neutrinoless Double Beta Decay Experiments

    Full text link
    The neutrinoless double beta decay is one of the few phenomena, belonging to the non-standard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β0\nu2\beta experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a non-direct `experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg--Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed--Dimopoulos--Dvali model.Comment: I've decided to move the collection of my papers to arXiv for easier acces

    Comparison of the results of modified NDVI indicator established on the basis of measurements by hyperspectral spectrometer and digital camera

    Get PDF
    Due to the lack of readily available imaging remote sensing methods that would determine the vegetation state on a local scale, an attempt was made to calculate the modified NDVI index on the basis of digital camera photography. To verify the effectiveness of the method, the digital camera and hyperspectral spectrometer results were compared. For the analysis material leaves of six different tree species from an urban area were selected and picked in four different phases of the vegetative season. The results prove that there is no significant correlation between the two methods, but they also suggest that further research on the proposed method is necessary.
    • …
    corecore