260 research outputs found

    Rate of Convergence to Barenblatt Profiles for the Fast Diffusion Equation

    Full text link
    We study the asymptotic behaviour of positive solutions of the Cauchy problem for the fast diffusion equation near the extinction time. We find a continuum of rates of convergence to a self-similar profile. These rates depend explicitly on the spatial decay rates of initial data

    Solving Large-Scale Optimization Problems Related to Bell's Theorem

    Get PDF
    Impossibility of finding local realistic models for quantum correlations due to entanglement is an important fact in foundations of quantum physics, gaining now new applications in quantum information theory. We present an in-depth description of a method of testing the existence of such models, which involves two levels of optimization: a higher-level non-linear task and a lower-level linear programming (LP) task. The article compares the performances of the existing implementation of the method, where the LPs are solved with the simplex method, and our new implementation, where the LPs are solved with a matrix-free interior point method. We describe in detail how the latter can be applied to our problem, discuss the basic scenario and possible improvements and how they impact on overall performance. Significant performance advantage of the matrix-free interior point method over the simplex method is confirmed by extensive computational results. The new method is able to solve problems which are orders of magnitude larger. Consequently, the noise resistance of the non-classicality of correlations of several types of quantum states, which has never been computed before, can now be efficiently determined. An extensive set of data in the form of tables and graphics is presented and discussed. The article is intended for all audiences, no quantum-mechanical background is necessary.Comment: 19 pages, 7 tables, 1 figur

    A note on bound entanglement and local realism

    Full text link
    We show using a numerical approach that gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et. al. Phys. Rev. Lett. 82, 5385 (1999) admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation.Comment: 5 page

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Reheating Temperature and Gauge Mediation Models of Supersymmetry Breaking

    Get PDF
    For supersymmetric theories with gravitino dark matter, the maximal reheating temperature consistent with big bang nucleosynthesis bounds arises when the physical gaugino masses are degenerate. We consider the cases of a stau or sneutrino next-to-lightest superpartner, which have relatively less constraint from big bang nucleosynthesis. The resulting parameter space is consistent with leptogenesis requirements, and can be reached in generalized gauge mediation models. Such models illustrate a class of theories that overcome the well-known tension between big bang nucleosynthesis and leptogenesis.Comment: 30 pages, 4 figures; v2: refs adde

    High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion

    Full text link
    We determine the critical exponents for the XY universality class in three dimensions, which is expected to describe the λ\lambda-transition in 4{}^4He. They are obtained from the analysis of high-temperature series computed for a two-component λϕ4\lambda\phi^4 model. The parameter λ\lambda is fixed such that the leading corrections to scaling vanish. We obtain ν=0.67166(55)\nu = 0.67166(55), γ=1.3179(11)\gamma = 1.3179(11), α=0.0150(17)\alpha=-0.0150(17). These estimates improve previous theoretical determinations and agree with the more precise experimental results for liquid Helium.Comment: 8 pages, revte

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=Λ+w1ρ(a)+w2aβ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a3(1+w)+ρ02aβ+ρ03a3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,00.4\Omega_{\text{m},0} \simeq 0.4 and n1n \simeq -1 (β=3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    The Effect of Convection on Disorder in Primary Cellular and Dendritic Arrays

    Get PDF
    Directional solidification studies have been carried out to characterize the spatial disorder in the arrays of cells and dendrites. Different factors that cause array disorder are investigated experimentally and analyzed numerically. In addition to the disorder resulting from the fundamental selection of a range of primary spacings under given experimental conditions, a significant variation in primary spacings is shown to occur in bulk samples due to convection effects, especially at low growth velocities. The effect of convection on array disorder is examined through directional solidification studies in two different alloy systems, Pb-Sn and Al-Cu. A detailed analysis of the spacing distribution is carried out, which shows that the disorder in the spacing distribution is greater in the Al-Cu system than in Pb-Sn system. Numerical models are developed which show that fluid motion can occur in both these systems due to the negative axial density gradient or due the radial temperature gradient which is always present in Bridgman growth. The modes of convection have been found to be significantly different in these systems, due to the solute being heavier than the solvent in the Al-Cu system and lighter than it in the Pb-Sn system. The results of the model have been shown to explain experimental observations of higher disorder and greater solute segregation in a weakly convective Al-Cu system than those in a highly convective Pb-Sn system
    corecore