12 research outputs found

    CRIP1 expression is correlated with a favorable outcome and less metastases in osteosarcoma patients

    Get PDF
    Predicting the clinical course of osteosarcoma patients is a crucial prerequisite for a better treatment stratification in these highly aggressive neoplasms of bone. In search of new and reliable biomarkers we recently identified cysteine-rich intestinal protein 1 (CRIP1) to have significant prognostic impact in gastric cancer and therefore decided to investigate its role also in osteosarcoma. For this purpose we analyzed 223 pretherapeutic and well characterized osteosarcoma samples for their immunohistochemical expression of CRIP1 and correlated our findings with clinico-pathological parameters including follow-up, systemic spread and response to chemotherapy. Interestingly and contrarily to gastric cancer, we found CRIP1 expression more frequently in patients with long-term survival (10-year survival 73% in positive vs. 54% in negative cases, p = 0.0433) and without metastases (p = 0.0108) indicating a favorable prognostic effect. CRIP1 therefore seems to represent a promising new biomarker in osteosarcoma patients which should be considered for a prospective validation

    Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging

    No full text
    In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, n = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (n = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site

    MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett's adenocarcinoma

    No full text
    To characterize proteomic changes found in Barrett's adenocarcinoma and its premalignant stages, the proteomic profiles of histologically defined precursor and invasive carcinoma lesions were analyzed by MALDI imaging MS. For a primary proteomic screening, a discovery cohort of 38 fresh frozen Barrett's adenocarcinoma patient tissue samples was used. The goal was to find proteins that might be used as markers for monitoring cancer development as well as for predicting regional lymph node metastasis and disease outcome. Using mass spectrometry for protein identification and validating the results by immunohistochemistry on an independent validation set, we could identify two of 60 differentially expressed m/z species between Barrett's adenocarcinoma and the precursor lesion: COX7A2 and S100-A10. Furthermore, among 22 m/z species that are differentially expressed in Barrett's adenocarcinoma cases with and without regional lymph node metastasis, one was identified as TAGLN2. In the validation set, we found a correlation of the expression levels of COX7A2 and TAGLN2 with a poor prognosis while S100-A10 was confirmed by multivariate analysis as a novel independent prognostic factor in Barrett's adenocarcinoma. Our results underscore the high potential of MALDI imaging for revealing new biologically significant molecular details from cancer tissues which might have potential for clinical application. This article is part of a Special Issue entitled: Translational Proteomics

    Tumor Classification of Six Common Cancer Types Based on Proteomic Profiling by MALDI Imaging

    No full text
    In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, <i>n</i> = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (<i>n</i> = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site

    Tumor Classification of Six Common Cancer Types Based on Proteomic Profiling by MALDI Imaging

    No full text
    In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, <i>n</i> = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (<i>n</i> = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site

    Patterns of care and follow-up care of patients with uveal melanoma in German-speaking countries: a multinational survey of the German Dermatologic Cooperative Oncology Group (DeCOG)

    Get PDF
    Purpose Uveal melanoma (UM) is an orphan cancer of high unmet medical need. Current patterns of care and surveillance remain unclear as they are situated in an interdisciplinary setting. Methods A questionnaire addressing the patterns of care and surveillance in the management of patients with uveal melanoma was distributed to 70 skin cancer centers in Austria, Germany and Switzerland. Frequency distributions of responses for each item of the questionnaire were calculated. Results 44 of 70 (62.9%) skin cancer centers completed the questionnaire. Thirty-nine hospitals were located in Germany (88.6%), three in Switzerland (6.8%) and two in Austria (4.5%). The majority (68.2%) represented university hospitals. Most patients with metastatic disease were treated in certified skin cancer centers (70.7%, 29/41). Besides, the majority of patients with UM were referred to the respective skin cancer center by ophthalmologists (87.2%, 34/39). Treatment and organization of follow-up of patients varied across the different centers. 35.1% (14/37) of the centers stated to not perform any screening measures. Conclusion Treatment patterns of patients with uveal melanoma in Germany, Austria and Switzerland remain extremely heterogeneous. A guideline for the treatment and surveillance is urgently needed
    corecore