235 research outputs found
A Brief Review on Dark Matter Annihilation Explanation for Excesses in Cosmic Ray
Recently data from PAMELA, ATIC, FERMI-LAT and HESS show that there are
excesses in the cosmic ray energy spectrum. PAMELA observed excesses
only in , but not in anti-proton spectrum. ATIC, FERMI-LAT and HESS
observed excesses in spectrum, but the detailed shapes are different
which requires future experimental observations to pin down the correct data
set. Nevertheless a lot of efforts have been made to explain the observed
excesses, and also why PAMELA only observed excesses in but not
in anti-proton. In this brief review we discuss one of the most popular
mechanisms to explain the data, the dark matter annihilation. It has long been
known that about 23% of our universe is made of relic dark matter. If the relic
dark matter was thermally produced, the annihilation rate is constrained
resulting in the need of a large boost factor to explain the data. We will
discuss in detail how a large boost factor can be obtained by the Sommerfeld
and Briet-Wigner enhancement mechanisms. Some implications for particle physics
model buildings will also be discussed.Comment: 22 pages, 6 figures. Several typoes corrected and some references
added. Published in Mod. Phys. Lett. A, Vol. 24, No. 27 (2009) pp. 2139-216
Two component dark matter
We explain the PAMELA positron excess and the PPB-BETS/ATIC e+ + e- data
using a simple two component dark matter model (2DM). The two particle species
in the dark matter sector are assumed to be in thermal equilibrium in the early
universe. While one particle is stable and is the present day dark matter, the
second one is metastable and decays after the universe is 10^-8 s old. In this
model it is simple to accommodate the large boost factors required to explain
the PAMELA positron excess without the need for large spikes in the local dark
matter density. We provide the constraints on the parameters of the model and
comment on possible signals at future colliders.Comment: 6 pages, 2 figures, discussion clarified and extende
Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter
We extract the positron and electron fluxes in the energy range 10 - 100 GeV
by combining the recent data from PAMELA and Fermi LAT. The {\it absolute
positron and electron} fluxes thus obtained are found to obey the power laws:
and respectively, which can be confirmed by the
upcoming data from PAMELA. The positron flux appears to indicate an excess at
energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux
is added to the Galactic positron background. This leaves enough motivation for
considering new physics, such as annihilation or decay of dark matter, as the
origin of positron excess in the cosmic rays.Comment: Accepted by JCA
Snowmass CF1 Summary: WIMP Dark Matter Direct Detection
As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection
subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader
Particle Physics community to produce this document. The charge to CF1 was (a)
to summarize the current status and projected sensitivity of WIMP direct
detection experiments worldwide, (b) motivate WIMP dark matter searches over a
broad parameter space by examining a spectrum of WIMP models, (c) establish a
community consensus on the type of experimental program required to explore
that parameter space, and (d) identify the common infrastructure required to
practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5
page appendix on instrumentation R&
Transformation kinetics of alloys under non-isothermal conditions
The overall solid-to-solid phase transformation kinetics under non-isothermal
conditions has been modeled by means of a differential equation method. The
method requires provisions for expressions of the fraction of the transformed
phase in equilibrium condition and the relaxation time for transition as
functions of temperature. The thermal history is an input to the model. We have
used the method to calculate the time/temperature variation of the volume
fraction of the favored phase in the alpha-to-beta transition in a zirconium
alloy under heating and cooling, in agreement with experimental results. We
also present a formulation that accounts for both additive and non-additive
phase transformation processes. Moreover, a method based on the concept of path
integral, which considers all the possible paths in thermal histories to reach
the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En
The Leptonic Higgs as a Messenger of Dark Matter
We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC
result from the annihilation or decay of dark matter particles via states of a
leptonic Higgs doublet to leptons, linking cosmic ray signals of dark
matter to LHC signals of the Higgs sector. The states of the leptonic Higgs
doublet are lighter than about 200 GeV, yielding large and
event rates at the LHC. Simple models are
given for the dark matter particle and its interactions with the leptonic
Higgs, for cosmic ray signals arising from both annihilations and decays in the
galactic halo. For the case of annihilations, cosmic photon and neutrino
signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
Decaying into the Hidden Sector
The existence of light hidden sectors is an exciting possibility that may be
tested in the near future. If DM is allowed to decay into such a hidden sector
through GUT suppressed operators, it can accommodate the recent cosmic ray
observations without over-producing antiprotons or interfering with the
attractive features of the thermal WIMP. Models of this kind are simple to
construct, generic and evade all astrophysical bounds. We provide tools for
constructing such models and present several distinct examples. The light
hidden spectrum and DM couplings can be probed in the near future, by measuring
astrophysical photon and neutrino fluxes. These indirect signatures are
complimentary to the direct production signals, such as lepton jets, predicted
by these models.Comment: 40 pages, 5 figure
Higgs Boson Mass in Low Scale Gauge Mediation Models
We consider low scale gauge mediation models with a very light gravitino
m_{3/2}~16 eV, in the light of recent experimental hints on the Higgs boson
mass. The light gravitino is very interesting since there is no gravitino
over-production problem, but it seems difficult to explain the Higgs boson mass
of ~125 GeV. This is because of the conflict between the light gravitino mass
and heavy SUSY particle masses needed for producing the relatively heavy Higgs
boson mass. We consider two possible extensions in this paper: a singlet
extension of the Higgs sector, and strongly coupled gauge mediation. We show
that there is a large parameter space, in both scenarios, where the Higgs boson
mass of ~125 GeV is explained without any conflict with such a very light
gravitino.Comment: 23 pages, 5 figure
Secluded Dark Matter Coupled to a Hidden CFT
Models of secluded dark matter offer a variant on the standard WIMP picture
and can modify our expectations for hidden sector phenomenology and detection.
In this work we extend a minimal model of secluded dark matter, comprised of a
U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT.
This provides a technically natural explanation for the hierarchically small
mediator-scale, with hidden-sector confinement generating m_{gamma'}>0.
Furthermore, the thermal history of the universe can differ markedly from the
WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large
number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase
transition at temperatures T << M_{dm} after freeze out. The mediator allows
both the dark matter and the Standard Model to communicate with the CFT, thus
modifying the low-energy phenomenology and cosmic-ray signals from the secluded
sector.Comment: ~50p, 8 figs; v2 JHEP versio
Pseudomoduli Dark Matter and Quiver Gauge Theories
We investigate supersymmetric models for dark matter which is represented by
pseudomoduli in weakly coupled hidden sectors. We propose a scheme to add a
dark matter sector to quiver gauge theories with metastable supersymmetry
breaking. We discuss the embedding of such scheme in string theory and we
describe the dark matter sector in terms of D7 flavour branes. We explore the
phenomenology in various regions of the parameters.Comment: 24 pages, 12 figures, JHEP3.cl
- âŠ