228 research outputs found

    MicroRNA Profiling Implies New Markers of Gemcitabine Chemoresistance in Mutant p53 Pancreatic Ductal Adenocarcinoma

    Full text link
    Background: No reliable predictors of susceptibility to gemcitabine chemotherapy exist in pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miR) are epigenetic gene regulators with tumorsuppressive or oncogenic roles in various carcinomas. This study assesses chemoresistant PDAC for its specific miR expression pattern. Methods: Gemcitabine-resistant variants of two mutant p53 human PDAC cell lines were established. Survival rates were analyzed by cytotoxicity and apoptosis assays. Expression of 1733 human miRs was investigated by microarray and validated by qRT-PCR. After in-silico analysis of specific target genes and proteins of dysregulated miRs, expression of MRP-1, Bcl-2, mutant p53, and CDK1 was quantified by Western blot. Results: Both established PDAC clones showed a significant resistance to gemcitabine (p<0.02) with low apoptosis rate (p<0.001) vs. parental cells. MiR-screening revealed significantly upregulated (miR-21, miR-99a, miR-100, miR-125b, miR-138, miR-210) and downregulated miRs (miR-31*, miR-330, miR-378) in chemoresistant PDAC (p<0.05). Bioinformatic analysis suggested involvement of these miRs in pathways controlling cell death and cycle. MRP-1 (p<0.02) and Bcl-2 (p<0.003) were significantly overexpressed in both resistant cell clones and mutant p53 (p = 0.023) in one clone. Conclusion: Consistent miR expression profiles, in part regulated by mutant TP53 gene, were identified in gemcitabine-resistant PDAC with significant MRP-1 and Bcl-2 overexpression. These results provide a basis for further elucidation of chemoresistance mechanisms and therapeutic approaches to overcome chemoresistance in PDAC

    Lipoprotein(a) plasma levels are not associated with incident microvascular complications in type 2 diabetes mellitus

    Get PDF
    Aims/hypothesis: Microvascular disease in type 2 diabetes is a significant cause of end-stage renal disease, blindness and peripheral neuropathy. The strict control of known risk factors, e.g. lifestyle, hyperglycaemia, hypertension and dyslipidaemia, reduces the incidence of microvascular complications, but a residual risk remains. Lipoprotein (a) [Lp(a)] is a strong risk factor for macrovascular disease in the general population. We hypothesised that plasma Lp(a) levels and the LPA gene SNPs rs10455872 and rs3798220 are associated with the incident development of microvascular complications in type 2 diabetes. Methods: Analyses were performed of data from the DiaGene study, a prospective study for complications of type 2 diabetes, collected in the city of Eindhoven, the Netherlands (n = 1886 individuals with type 2 diabetes, mean follow-up time = 6.97 years). To assess the relationship between plasma Lp(a) levels and the LPA SNPs with each newly developed microvascular complication (retinopathy n = 223, nephropathy n = 246, neuropathy n = 236), Cox proportional hazards models were applied and adjusted for risk factors for microvascular complications (age, sex, mean arterial pressure, non-HDL-cholesterol, HDL-cholesterol, BMI, duration of type 2 diabetes, HbA1c and smoking). Results: No significant associations of Lp(a) plasma levels and the LPA SNPs rs10455872 and rs3798220 with prevalent or incident microvascular complications in type 2 diabetes were found. In line with previous observations the LPA SNPs rs10455872 and rs3798220 did influence the plasma Lp(a) levels. Conclusions/interpretation: Our data show no association between Lp(a) plasma levels and the LPA SNPs with known effect on Lp(a) plasma levels with the development of microvascular complications in type 2 diabetes. This indicates that Lp(a) does not play a major role in the development of microvascular complications. However, larger studies are needed to exclude minimal effects of Lp(a) on the development of microvascular complications

    Inhibitory and agonistic autoantibodies directed against the ß(2)-adrenergic receptor in pseudoexfoliation syndrome and glaucoma

    Get PDF
    Pseudoexfoliation syndrome (PEXS) and glaucoma (PEXG) are assumed to be caused by a generalized elastosis leading to the accumulation of PEX material in ocular as well as in extraocular tissues. The exact pathophysiology of PEXS is still elusive. PEXG, the most common type of secondary open-angle glaucoma (OAG), is characterized by large peaks of intraocular pressure (IOP) with a progressive loss of the visual field. Agonistic autoantibodies (agAAbs) against the ß(2)-adrenergic receptor (AR) have been shown to be present in sera of patients with primary and secondary OAG and ocular hypertension and are seemingly linked to IOP. In the present study, we investigated the autoantibodies directed against the ß(2)-AR in sera of patients with PEXS and PEXG. We recruited 15, 10, and 15 patients with PEXG, PEXS, and primary OAG, respectively. Ten healthy individuals served as controls. All patients underwent standard ophthalmological examination with Octopus G1 perimetry. agAAbs prepared from serum samples were analyzed in a rat cardiomyocyte–based bioassay for the presence of agAAbs. We identified the interacting loop of the ß(2)-AR and the immunoglobulin G (IgG) subclasses using synthetic peptides corresponding to the extracellular loops of the receptors and enzyme-linked immunosorbent assay, respectively. None of the controls were ß(2)-agAAb–positive (0.2 ± 0.5 U). No ß(2)-agAAbs (0.2 ± 0.4 U), but inhibitory ß(2)-AAbs were observed in 80% of the patients that partially blocked the drug-induced ß(2)-adrenergic stimulation; 5.8 ± 1.7 U vs. 11.1 ± 0.9 U for clenbuterol in the absence and the presence of sera from patients with PEXS, respectively. Epitope analyses identified the third extracellular loop of the ß(2)-AR as the target of the inhibitory ß(2)-AAbs, being of IgG3 subtype in PEXS patients. In contrast, patients with PEXG showed ß(2)-agAAbs (5.6 ± 0.9 U), but no inhibitory ones. The ß(2)-agAAbs levels of patients with PEXG and primary OAG patients (3.9 ± 2.8 U; p > 0.05) were at a similar level. In two cases of PEXG, the ß(2)-agAAbs exert synergistic effects with clenbuterol. The activity increased from 11.5 ± 0.3 (clenbuterol only) to 16.3 ± 0.9 U. As autoimmune mechanisms were reportedly involved in the pathogenesis of glaucoma, agonistic and inhibitory ß(2)-AAbs seem to be a part of this multifactorial interplay

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Agonistic β2-adrenergic receptor autoantibodies characterize the aqueous humor of patients with primary and secondary open-angle glaucoma

    Get PDF
    PURPOSE: Agonistic β2-adrenergic receptor autoantibodies (β2-agAAbs) were recently observed in sera of patients with ocular hypertension (OHT), primary (POAG), and secondary open-angle glaucoma (SOAG), yet not in healthy controls (HCs). It was the aim of the present study to investigate the presence of β2-agAAb in aqueous humor (AH) samples of OAG patients and to correlate these with the corresponding β2-agAAb serum data. MATERIAL AND METHODS: Thirty-nine patients (21 male, 18 female) were recruited from the Department of Ophthalmology, University of Erlangen-Nürnberg: twenty-one POAG, 18 SOAG. Aqueous humor samples were collected during minimal invasive glaucoma surgery. Serum and AH samples were analyzed for β2-agAAb by a bioassay quantifying the beating rate of cultured cardiomyocyte (cut-off: 2 U). RESULTS: Thirty-six of 39 (92.3%) and 34 of 39 (87.2%) of OAG patients showed a β2-agAAb in their sera and AH samples, respectively. All β2-agAAb AH-positive OAG patients were also seropositive. We also observed a β2-agAAb seropositivity in 95 and 89% of patients with POAG and SOAG, respectively. Beta2-agAAbs were seen in 86% (POAG) and 78% (SOAG) of AH samples. The β2-agAAb adrenergic activity was increased in the AH of patients with POAG (6.5 ± 1.5 U) when compared with those with SOAG (4.1 ± 1.1 U; p = 0.004). Serum β2-agAAb adrenergic activity did not differ between the cohorts [POAG (4.5 ± 1.5 U); SOAG (4.6 ± 2.1 U; p=0.458)]. No correlation of the beating rates were observed between serum and AH samples for group and subgroup analyses. CONCLUSION: The detection of β2-agAAb in systemic and local circulations supports the hypothesis of a direct functional impact of these agAAbs on ocular G-protein coupled receptors. The high prevalence of β2-agAAb in serum and AH samples of patients with POAG or SOAG suggests a common role of these AAbs in the etiopathogenesis of glaucoma, independent of open-angle glaucoma subtype

    Histone Acetylation-Mediated Regulation of the Hippo Pathway

    Get PDF
    The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma

    Get PDF
    purpose. Three common sequence variants in the lysyl oxidase-like 1 (LOXL1) gene were recently associated with both pseudoexfoliation (PEX) and pseudoexfoliation glaucoma (PEXG) in populations from Iceland and Sweden. In this study, the genetic association of these variants was investigated in patients with PEX or PEXG of German and Italian descent. methods. The three LOXL1 single-nucleotide polymorphisms (SNPs), one intronic (rs2165241) and two nonsynonymous coding SNPs (rs1048661: R141L and rs3825942: G153D) were genotyped in a total of 726 unrelated patients with PEX or PEXG (517 Germans and 209 Italians) and 418 healthy subjects who had normal findings in repeated ophthalmic examinations, and a genetic association study was performed. results. Strong association with the three LOXL1 common sequence variants was seen in both the PEX and PEXG patient groups independent of their geographic origin (rs2165241, combined OR = 3.42, P = 1.28 × 10−40; rs1048661, OR = 2.43, P = 2.90 × 10−19; and rs3825942, OR = 4.87, P = 8.22 × 10−23). Similarly, the common frequent haplotype (G-G) composed of the two coding SNPs (rs1048661 and rs3825942) was strongly associated in PEX and PEXG cohorts of both populations with the disease (combined OR = 3.58, P = 5.21× 10−43). conclusions. Genetic variants in LOXL1 confer risk to PEX in German and Italian populations, independent of the presence of secondary glaucoma, confirming findings in patients from Northern Europe

    Agonistic autoantibodies against β2-adrenergic receptor influence retinal microcirculation in glaucoma suspects and patients

    Get PDF
    PURPOSE: Agonistic β2-adrenergic receptor autoantibodies (β2-agAAb) have been observed in sera of patients with ocular hypertension and open-angle glaucoma (OAG). They target the β2-receptors on trabecular meshwork, ciliary body and pericytes (Junemann et al. 2018; Hohberger et al. 2019). In addition to their influence on the intraocular pressure, an association to retinal microcirculation is discussed. This study aimed to investigate foveal avascular zone (FAZ) characteristics by en face OCT angiography (OCT-A) in glaucoma suspects and its relationship to β2-agAAb status in patients with OAG. MATERIAL AND METHODS: Thirty-four patients (28 OAG, 6 glaucoma suspects) underwent standardized, clinical examination including sensory testing as white-on-white perimetry (Octopus G1, mean defect, MD) and structural measures as retinal nerve fibre layer (RNFL) thickness, neuroretinal rim width (BMO-MRW), retinal ganglion cell layer (RGCL) thickness, and inner nuclear layer (INL) thickness with high-resolution OCT. FAZ characteristics were measured by OCT-A scans of superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP). FAZ-R was calculated (area FAZ (SVP)/area FAZ (ICP)). Using cardiomyocyte bioassays we analysed serum samples for the presence of β2-agAAb. RESULTS: (I) Total mean FAZ area [mm2]: 0.34±0.16 (SVP), 0.24±0.12 (ICP), and 0.49±0.24 (DCP); mean FAZ-R 1.58±0.94. No correlation was seen for FAZ-R with MD, RNFL, BMO-MRW, RGCL thickness and INL thickness (p>0.05). (II) ß2-agAAb have been observed in 91% patients and showed no correlation with MD, RNFL, BMO-MRW, RGCL thickness and INL thickness (p>0.05). (III) FAZ-R correlated significantly with the β2-agAAb-induced increase of the beat rate of cardiomyocyte (p = 0.028). CONCLUSION: FAZ characteristics did not correlate with any glaucoma associated functional and morphometric follow-up parameter in the present cohort. However, level of β2-agAAb showed a significantly correlation with FAZ-ratio. We conclude that β2-agAAb might be a novel biomarker in glaucoma pathogenesis showing association to FAZ-ratio with OCT-A
    • …
    corecore